cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365911 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(4*k+3) / (4*k+3)! ).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 20, 1, 0, 1680, 240, 1, 369600, 102960, 4160, 168168001, 76876800, 7743840, 137225153280, 93117024001, 17091609600, 182510023324320, 172080261401600, 49615854288001, 369403226582016000, 461748751736204400, 191552892427653120
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(sinh(x)-sin(x))/2)))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/4)} binomial(n,4*k+3) * a(n-4*k-3).
E.g.f.: 1 / ( 1 - (sinh(x) - sin(x))/2 ).

A365912 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+3) / (5*k+3)! ).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 20, 0, 1, 1680, 0, 330, 369600, 1, 180180, 168168000, 13990, 163363200, 137225088001, 39041010, 232792560000, 182509367449640, 118574979600, 494730748512001, 369398970833730090, 451334037000000, 1500683270499930350, 1080492079984609149000
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+3)/(5*k+3)!))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/5)} binomial(n,5*k+3) * a(n-5*k-3).

A365915 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(2*k+5) / (2*k+5)! ).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 252, 1, 1584, 1, 7436, 756757, 31616, 14702689, 129404, 189559657, 11733266992, 2062481617, 516242875084, 20611819933, 14135172627712, 623557476714481, 312148517693820, 52096977907924561, 6121122865591920
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x+x^3/6-sinh(x))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-5)/2)} binomial(n,2*k+5) * a(n-2*k-5).
E.g.f.: 1 / ( 1 + x + x^3/6 - sinh(x) ).
Showing 1-3 of 3 results.