cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332382 If n = Sum (2^e_k) then a(n) = Product (prime(e_k + 2)).

Original entry on oeis.org

1, 3, 5, 15, 7, 21, 35, 105, 11, 33, 55, 165, 77, 231, 385, 1155, 13, 39, 65, 195, 91, 273, 455, 1365, 143, 429, 715, 2145, 1001, 3003, 5005, 15015, 17, 51, 85, 255, 119, 357, 595, 1785, 187, 561, 935, 2805, 1309, 3927, 6545, 19635, 221, 663, 1105, 3315, 1547, 4641, 7735, 23205
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2020

Keywords

Comments

Permutation of odd squarefree numbers (A056911).
a(n) is the n-th power of 3 in the monoid defined in A331590. - Peter Munn, May 02 2020

Examples

			21 = 2^0 + 2^2 + 2^4 so a(21) = prime(2) * prime(4) * prime(6) = 3 * 7 * 13 = 273.
		

Crossrefs

Bisection of A019565.
A003961, A003987, A059897, A331590, A334748 are used to express relationship between terms of this sequence.

Programs

  • Maple
    a:= n-> (l-> mul(ithprime(i+1)^l[i], i=1..nops(l)))(convert(n, base, 2)):
    seq(a(n), n=0..55);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    nmax = 55; CoefficientList[Series[Product[(1 + Prime[k + 2] x^(2^k)), {k, 0, Floor[Log[2, nmax]]}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := Prime[Floor[Log[2, n]] + 2] a[n - 2^Floor[Log[2, n]]]; Table[a[n], {n, 0, 55}]
  • PARI
    a(n) = my(b=Vecrev(binary(n))); prod(k=1, #b, if (b[k], prime(k+1), 1)); \\ Michel Marcus, Feb 10 2020

Formula

G.f.: Product_{k>=0} (1 + prime(k+2) * x^(2^k)).
a(0) = 1; a(n) = prime(floor(log_2(n)) + 2) * a(n - 2^floor(log_2(n))).
a(2^(k-1)-1) = A002110(k)/2 for k > 0.
From Peter Munn, May 02 2020: (Start)
a(2n) = A003961(a(n)).
a(2n+1) = 3 * a(2n).
a(n) = A225546(4^n).
a(n+k) = A331590(a(n), a(k)).
a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
A048675(a(n)) = 2n.
(End)
a(n+1) = A334748(a(n)). - Peter Munn, Mar 04 2022