cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332385 Sum of squares of indices of distinct prime factors of n.

Original entry on oeis.org

0, 1, 4, 1, 9, 5, 16, 1, 4, 10, 25, 5, 36, 17, 13, 1, 49, 5, 64, 10, 20, 26, 81, 5, 9, 37, 4, 17, 100, 14, 121, 1, 29, 50, 25, 5, 144, 65, 40, 10, 169, 21, 196, 26, 13, 82, 225, 5, 16, 10, 53, 37, 256, 5, 34, 17, 68, 101, 289, 14, 324, 122, 20, 1, 45, 30, 361, 50, 85, 26, 400, 5, 441, 145, 13
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 10 2020

Keywords

Examples

			a(21) = a(3 * 7) = a(prime(2) * prime(4)) = 2^2 + 4^2 = 20.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(numtheory[pi](i[1])^2, i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    nmax = 75; CoefficientList[Series[Sum[k^2 x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := Plus @@ (PrimePi[#[[1]]]^2 & /@ FactorInteger[n]); Table[a[n], {n, 1, 75}]

Formula

G.f.: Sum_{k>=1} k^2 * x^prime(k) / (1 - x^prime(k)).
If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^2), where pi = A000720.