cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332411 If n = Product (p_j^k_j) then a(n) = Sum (n^(pi(p_j) - 1)), where pi = A000720.

Original entry on oeis.org

0, 1, 3, 1, 25, 7, 343, 1, 9, 101, 14641, 13, 371293, 2745, 240, 1, 24137569, 19, 893871739, 401, 9282, 234257, 78310985281, 25, 625, 11881377, 27, 21953, 14507145975869, 931, 819628286980801, 1, 1185954, 1544804417, 44100, 37, 177917621779460413, 114415582593, 90224238, 1601
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 11 2020

Keywords

Examples

			a(21) = a(3 * 7) = a(prime(2) * prime(4)) = 21^1 + 21^3 = 9282;
9282 in base 21 (reverse order of digits with leading zero) = 0101.
                                                               | |
                                                               2 4
		

Crossrefs

Cf. A000079 (without a(0) gives the positions of 1's), A000244 (without a(0) gives the fixed points), A000720, A087207, A090883, A276379 (a(n) written in base n), A308814.

Programs

  • Maple
    a:= n-> add(n^(numtheory[pi](i[1])-1), i=ifactors(n)[2]):
    seq(a(n), n=1..42);  # Alois P. Heinz, Feb 11 2020
  • Mathematica
    a[n_] := Plus @@ (n^(PrimePi[#[[1]]] - 1) & /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 40}]
    Table[SeriesCoefficient[Sum[n^(k - 1) x^Prime[k]/(1 - x^Prime[k]), {k, 1, n}], {x, 0, n}], {n, 1, 40}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, n^(primepi(f[k,1])-1)); \\ Michel Marcus, Feb 11 2020

Formula

a(n) = [x^n] Sum_{k>=1} n^(k - 1) * x^prime(k) / (1 - x^prime(k)).