A332411 If n = Product (p_j^k_j) then a(n) = Sum (n^(pi(p_j) - 1)), where pi = A000720.
0, 1, 3, 1, 25, 7, 343, 1, 9, 101, 14641, 13, 371293, 2745, 240, 1, 24137569, 19, 893871739, 401, 9282, 234257, 78310985281, 25, 625, 11881377, 27, 21953, 14507145975869, 931, 819628286980801, 1, 1185954, 1544804417, 44100, 37, 177917621779460413, 114415582593, 90224238, 1601
Offset: 1
Keywords
Examples
a(21) = a(3 * 7) = a(prime(2) * prime(4)) = 21^1 + 21^3 = 9282; 9282 in base 21 (reverse order of digits with leading zero) = 0101. | | 2 4
Crossrefs
Programs
-
Maple
a:= n-> add(n^(numtheory[pi](i[1])-1), i=ifactors(n)[2]): seq(a(n), n=1..42); # Alois P. Heinz, Feb 11 2020
-
Mathematica
a[n_] := Plus @@ (n^(PrimePi[#[[1]]] - 1) & /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 40}] Table[SeriesCoefficient[Sum[n^(k - 1) x^Prime[k]/(1 - x^Prime[k]), {k, 1, n}], {x, 0, n}], {n, 1, 40}]
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, n^(primepi(f[k,1])-1)); \\ Michel Marcus, Feb 11 2020
Formula
a(n) = [x^n] Sum_{k>=1} n^(k - 1) * x^prime(k) / (1 - x^prime(k)).