cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332437 Decimal expansion of 2*cos(Pi/9).

Original entry on oeis.org

1, 8, 7, 9, 3, 8, 5, 2, 4, 1, 5, 7, 1, 8, 1, 6, 7, 6, 8, 1, 0, 8, 2, 1, 8, 5, 5, 4, 6, 4, 9, 4, 6, 2, 9, 3, 9, 8, 7, 2, 4, 1, 6, 2, 6, 8, 5, 2, 8, 9, 2, 9, 2, 6, 6, 1, 8, 0, 5, 7, 3, 3, 2, 5, 5, 4, 8, 4, 4, 2, 4, 2, 1, 9, 9, 1, 7, 7, 8, 9, 1, 7, 8, 9, 9, 4, 9, 1, 7, 7, 9, 6, 7, 5, 8, 9, 6, 1, 3, 4, 9
Offset: 1

Views

Author

Wolfdieter Lang, Mar 27 2020

Keywords

Comments

This algebraic number called rho(9) of degree 3 = A055034(9) has minimal polynomial C(9, x) = x^3 - 3*x - 1 (see A187360).
rho(9) gives the length ratio diagonal/side of the smallest diagonal in the regular 9-gon.
The length ratio diagonal/side of the second smallest and the third smallest (or the largest) diagonal in the regular 9-gon are rho(9)^2 - 1 = A332438 - 1 and rho(9) + 1, respectively. - Mohammed Yaseen, Oct 31 2020

Examples

			rho(9) = 1.87938524157181676810821855464946293987241626852892926618...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Programs

  • Mathematica
    RealDigits[2 * Cos[Pi/9], 10, 100][[1]] (* Amiram Eldar, Mar 27 2020 *)
  • PARI
    2*cos(Pi/9) \\ Michel Marcus, Mar 28 2020

Formula

rho(9) = 2*cos(Pi/9).
Equals (-1)^(-1/9)*((-1)^(1/9) - i)*((-1)^(1/9) + i). - Peter Luschny, Mar 27 2020
Equals 2*A019879. - Michel Marcus, Mar 28 2020
Equals sqrt(A332438). - Mohammed Yaseen, Oct 31 2020
From Peter Bala, Oct 20 2021: (Start)
The zeros of x^3 - 3*x - 1 are r_1 = -2*cos(2*Pi/9), r_2 = -2*cos(4*Pi/9) and r_3 = -2*cos(8*Pi/9) = 2*cos(Pi/9).
The polynomial x^3 - 3*x - 1 is irreducible over Q (since it is irreducible mod 2) with discriminant equal to 3^4, a square. It follows that the Galois group of the number field Q(2*cos(Pi/9)) over Q is cyclic of order 3.
The mapping r -> 2 - r^2 cyclically permutes the zeros r_1, r_2 and r_3. The inverse cyclic permutation is given by r -> r^2 - r - 2.
The first differences r_1 - r_2, r_2 - r_3 and r_3 - r_1 are the zeros of the cyclic cubic polynomial x^3 - 9*x - 9 of discriminant 3^6.
First quotient relations:
r_1/r_2 = 1 + (r_3 - r_1); r_2/r_3 = 1 + (r_1 - r_2); r_3/r_1 = 1 + (r_2 - r_3);
r_2/r_1 = (r_3 - r_2) - 2; r_3/r_2 = (r_1 - r_3) - 2; r_1/r_3 = (r_2 - r_1) - 2;
r_1/r_2 + r_2/r_3 + r_3/r_1 = 3; r_2/r_1 + r_3/r_2 + r_1/r_3 = -6.
Thus the first quotients r_1/r_2, r_2/r_3 and r_3/r_1 are the zeros of the cyclic cubic polynomial x^3 - 3*x^2 - 6*x - 1 of discriminant 3^6. See A214778.
Second quotient relations:
(r_1*r_2)/(r_3^2) = 3*r_2 - 6*r_1 - 8, with two other similar relations by cyclically permuting the 3 zeros. The three second quotients are the zeros of the cyclic cubic polynomial x^3 + 24*x^2 + 3*x - 1 of discriminant 3^10.
(r_1^2)/(r_2*r_3) = 1 - 3*(r_2 + r_3), with two other similar relations by cyclically permuting the 3 zeros. (End)
Equals i^(2/9) + i^(-2/9). - Gary W. Adamson, Jun 25 2022
Equals Re((4+4*sqrt(3)*i)^(1/3)). - Gerry Martens, Mar 19 2024
From Amiram Eldar, Nov 22 2024: (Start)
Equals Product_{k>=1} (1 - (-1)^k/A056020(k)).
Equals 1 + Product_{k>=1} (1 + (-1)^k/A156638(k)). (End)