cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A332449 a(n) = A005940(1+(3*A156552(n))).

Original entry on oeis.org

1, 4, 9, 10, 25, 16, 49, 30, 21, 36, 121, 22, 169, 100, 81, 90, 289, 40, 361, 250, 225, 196, 529, 66, 55, 484, 105, 490, 841, 64, 961, 270, 441, 676, 625, 154, 1369, 1156, 1089, 750, 1681, 144, 1849, 1210, 39, 1444, 2209, 198, 91, 84, 1521, 1690, 2809, 120, 1225, 1470, 2601, 2116, 3481, 34, 3721, 3364, 1029, 810, 3025, 400
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2020

Keywords

Crossrefs

Cf. A329609 (terms sorted into ascending order).
Cf. A000290, A003961, A005117 (positions of squares), A005940, A010052, A156552, A277010, A329603, A332450, A332451, A347119, A347120, A353267 [= A348717(a(n))], A353269, A353270 [= gcd(n, a(n))], A353271, A353272, A353273.
Cf. also A332223.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332449(n) = A005940(1+(3*A156552(n)));

Formula

a(n) = A005940(1+(3*A156552(n))).
a(p) = p^2 for all primes p.
a(u) = A332451(u) and A010052(a(u)) = 1 for all squarefree numbers (A005117).
a(A003961(n)) = A003961(a(n)) = A005940(1+(6*A156552(n))).
From Antti Karttunen, Apr 10 2022: (Start)
a(n) = A347119(n) * A000290(A347120(n)) = A353270(n) * A353272(n).
a(A353269(n)) = 1 for all n.
(End)

A332223 a(1) = 1, and for n > 1, a(n) = A005940(1+sigma(A156552(n))).

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 16, 7, 25, 18, 32, 25, 64, 21, 21, 49, 128, 27, 256, 35, 40, 121, 512, 49, 125, 385, 49, 121, 1024, 13, 2048, 13, 225, 1573, 105, 77, 4096, 57, 187, 343, 8192, 63, 16384, 65, 55, 4693, 32768, 121, 625, 32, 15625, 85, 65536, 81, 180, 91, 253, 9945, 131072, 175, 262144, 508079, 625, 847, 729, 169, 524288, 2057, 2601, 105, 1048576
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2020

Keywords

Comments

From Antti Karttunen, Jul 31 - Aug 06 2020: (Start)
As a curiosity, like with sigma, also here a(14) = a(15). [Cf. also A003973 and A341512]
Question: is it possible that a(k) = 2*k for any k? If not, then the deficiency (A033879) cannot be -1, and there are no quasiperfect numbers. If there were such cases, then A156552(k) = q would be an instance of quasiperfect number, which should also be an odd square, thus k would need to be of the form 4u+2.
In range n <= 10000, a(n) is a nontrivial multiple of n only at n = [25, 35, 343, 539, 847, 3315] with a(n) = [125, 105, 2401, 2695, 2541, 9945]. The quotients are thus also odd: 5, 3, 7, 5, 3, 3.
This rather meager empirical evidence motivates a conjecture that no quotient a(n)/n may be an even integer, and particularly, never a power of 2 larger than one, which (when translated back to the ordinary, unconjugated sigma) claims that it is not possible that sigma(n) = 2^k * n + 2^k - 1, for any n > 1, k > 0. See also A336700 and A336701, where this leads to a rather surprising empirical observation.
(End)

Crossrefs

Cf. A003961, A332449, A332450, A332451, A332460 (for other functions similarly conjugated).

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332223(n) = if(1==n,n,A005940(1+sigma(A156552(n))));
    
  • PARI
    A332223(n) = if(1==n,n,A005940(1+sumdiv(A156552(n),d,d))); \\ Antti Karttunen, Aug 04 2020

Formula

For n > 1, a(n) = A005940(1+A000203(A156552(n))) = A005940(1+A323243(n)).
a(A324201(n)) = A003961(A324201(n)). [It's an open problem whether A324201 gives all such solutions]
For n > 1, a(n) = A005940(1 + (Sum_{d|A156552(n)} d)). - Antti Karttunen, Aug 04 2020

A366263 Doudna sequence permuted by Blue code: a(n) = A005940(1+A193231(n)).

Original entry on oeis.org

1, 2, 4, 3, 6, 5, 9, 8, 16, 27, 25, 18, 15, 12, 10, 7, 14, 11, 21, 20, 35, 30, 24, 45, 81, 32, 54, 125, 36, 75, 49, 50, 100, 147, 121, 98, 225, 72, 150, 245, 625, 162, 64, 243, 250, 343, 375, 108, 33, 28, 22, 13, 40, 63, 55, 42, 90, 175, 135, 48, 77, 70, 60, 105, 210, 385, 315, 120, 143, 154, 140, 231, 525, 180
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) };
    A366263(n) = A005940(1+A193231(n));

Formula

a(n) = A332450(A005940(1+n)).
For all n >= 0, A001222(a(n)) = A234022(n) and A046523(a(n)) = A286601(n).
For all n >= 1, A055396(a(n)) = A277818(n) = 1+A268389(n).

A332451 a(n) = A005940(1+A048724(A156552(n))).

Original entry on oeis.org

1, 4, 9, 6, 25, 16, 49, 10, 15, 36, 121, 54, 169, 100, 81, 14, 289, 24, 361, 150, 225, 196, 529, 250, 35, 484, 21, 294, 841, 64, 961, 22, 441, 676, 625, 90, 1369, 1156, 1089, 490, 1681, 144, 1849, 726, 375, 1444, 2209, 686, 77, 60, 1521, 1014, 2809, 40, 1225, 1210, 2601, 2116, 3481, 486, 3721, 3364, 735, 26, 3025, 400
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2020

Keywords

Crossrefs

Cf. A000290, A003961, A005117 (gives the positions of squares), A005940, A008836, A010052, A048724, A156552, A277010, A293448, A332449, A332450.
Permutation of A028260.
Cf. A332460 for complementary sequence (after its initial 1).

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A048724(n) = bitxor(n, 2*n); \\ From A048724
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332451(n) = A005940(1+A048724(A156552(n)));

Formula

a(n) = A005940(1+A048724(A156552(n))).
a(p) = p^2 for all primes p.
For all squarefree numbers u, a(u) = A332449(u) and A010052(a(u)) = 1.
a(A003961(n)) = A003961(a(n)).
a(A293448(n)) = A293448(a(n)).
a(A332450(n)) = A332450(A003961(n)); A332450(a(n)) = A003961(A332450(n)).
A008836(a(n)) = +1 for all n.

A332460 a(n) = A005940(1+A065621(A156552(n))), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 8, 5, 18, 7, 12, 27, 50, 11, 32, 13, 98, 75, 20, 17, 30, 19, 72, 147, 242, 23, 108, 125, 338, 45, 200, 29, 162, 31, 28, 363, 578, 245, 48, 37, 722, 507, 300, 41, 450, 43, 392, 243, 1058, 47, 500, 343, 70, 867, 968, 53, 42, 605, 588, 1083, 1682, 59, 128, 61, 1922, 675, 44, 845, 882, 67, 1352, 1587, 1250, 71, 180, 73, 2738, 105
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2020

Keywords

Crossrefs

Cf. A332451 for a complementary sequence (after its initial 1).
Permutation of A026424 after the initial 1.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A065621(n) = bitxor(n-1,n+n-1);
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332460(n) = A005940(1+A065621(A156552(n)));

Formula

a(1) = 1, and for n > 1, a(n) = A005940(1+A065621(A156552(n))).
a(p) = p for all primes p.
a(A003961(n)) = A003961(a(n)).
A008836(a(n)) = -1 for all n >= 2.
Showing 1-5 of 5 results.