cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332458 Odd numbers k, not powers of primes, such that sigma(k) == 2 modulo 8 and sigma(sigma(k)) == 6 modulo 8.

Original entry on oeis.org

4041, 5193, 15633, 25181, 25497, 26645, 30249, 36441, 36517, 40817, 47045, 53577, 54513, 85697, 87273, 92889, 93393, 94761, 95913, 97281, 111609, 129681, 136233, 143433, 151713, 161257, 162441, 163377, 165897, 171197, 177129, 210033, 212697, 213849, 222993, 228977, 229833, 232897, 238041, 245673, 246969, 250137, 260577
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2020

Keywords

Crossrefs

Intersection of A228058 and A332457; intersection of A332456 and A332228.
Cf. also A332445.

Programs

  • Magma
    [k:k in [3..270000 by 2]| not IsPrimePower(k) and DivisorSigma(1,k) mod 8 eq 2 and DivisorSigma(1, DivisorSigma(1,k)) mod 8 eq 6]; // Marius A. Burtea, Feb 15 2020
  • PARI
    isA332458(n) = if(!(n%2)||isprimepower(n),0, my(s=sigma(n)); ((2==(s%8)) && (6==(sigma(s)%8))));
    

A332457 Numbers k such that sigma(k) == 2 modulo 8 and sigma(sigma(k)) == 6 modulo 8.

Original entry on oeis.org

193, 202, 673, 1153, 1201, 1354, 1601, 1642, 1873, 2017, 2088, 2593, 2682, 2753, 3049, 3112, 3217, 3313, 3328, 3754, 3898, 4041, 4084, 4177, 4273, 4337, 4426, 4561, 5193, 5233, 5386, 5449, 5482, 5849, 6337, 6353, 6826, 6922, 7002, 7057, 7114, 7393, 7402, 7537, 7793, 8081, 8104, 8353, 8564, 8698, 8872, 9049, 9377, 9601
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2020

Keywords

Comments

That the first part of the condition is necessary for odd perfect numbers, see A332228, that the second part of the condition is necessary, see A019283 and A326181.

Crossrefs

Intersection of A332226 and A332456.
Cf. A332458 (a subsequence of non-primepower odd terms).

Programs

  • Magma
    [k:k in [1..9700]| DivisorSigma(1,k) mod 8 eq 2 and DivisorSigma(1, DivisorSigma(1,k)) mod 8 eq 6]; // Marius A. Burtea, Feb 15 2020
  • Mathematica
    Select[Range[10000],With[{c=DivisorSigma[1,#]},Mod[c,8]==2&&Mod[DivisorSigma[1,c],8]==6&]]  (* Harvey P. Dale, Nov 23 2024 *)
  • PARI
    isA332457(n) = { my(s=sigma(n)); ((2==(s%8)) && (6==(sigma(s)%8))); };
    
Showing 1-2 of 2 results.