A332468 a(n) = Sum_{k=1..n} mu(k) * floor(n/k)^n.
1, 3, 25, 239, 3091, 45863, 821227, 16711423, 387138661, 9990174303, 285262663291, 8913906888703, 302861978789371, 11111328334033327, 437889112287422401, 18446462446101903615, 827238009323454485641, 39346257879101283645743, 1978418304199236175597105
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..386
Crossrefs
Programs
-
Magma
[&+[MoebiusMu(k)*Floor(n/k)^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 13 2020
-
Mathematica
Table[Sum[MoebiusMu[k] Floor[n/k]^n, {k, 1, n}], {n, 1, 19}] b[n_, k_] := b[n, k] = n^k - Sum[b[Floor[n/j], k], {j, 2, n}]; a[n_] := b[n, n]; Table[a[n], {n, 1, 19}]
-
PARI
a(n)={sum(k=1, n, moebius(k) * floor(n/k)^n)} \\ Andrew Howroyd, Feb 13 2020
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A344527_T(n,k): if n == 0: return 0 c, j, k1 = 1, 2, n//2 while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*A344527_T(k1,k) j, k1 = j2, n//j2 return n*(n**(k-1)-1)-c+j def A332468(n): return A344527_T(n,n) # Chai Wah Wu, Nov 02 2023
Formula
a(n) ~ n^n. - Vaclav Kotesovec, May 28 2021