cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332490 a(n) = Sum_{k=1..n} k * ceiling(n/k).

Original entry on oeis.org

1, 4, 10, 18, 30, 42, 61, 77, 101, 124, 153, 177, 218, 246, 285, 325, 373, 409, 467, 507, 570, 624, 683, 731, 816, 873, 942, 1010, 1095, 1155, 1258, 1322, 1418, 1500, 1589, 1673, 1801, 1877, 1976, 2072, 2203, 2287, 2426, 2514, 2643, 2767, 2886, 2982, 3155, 3262
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[k*Ceiling(n/k):k in [1..n]]:n in [1..50]]; // Marius A. Burtea, Feb 16 2020
    
  • Mathematica
    Table[Sum[k Ceiling[n/k], {k, 1, n}], {n, 1, 50}]
    Table[n (n + 1)/2 + Sum[DivisorSigma[1, k], {k, 1, n - 1}], {n, 1, 50}]
    nmax = 50; CoefficientList[Series[x/(1 - x)^3 + (x/(1 - x)) Sum[x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, k*ceil(n/k)); \\ Michel Marcus, Feb 17 2020
    
  • Python
    from math import isqrt
    def A332490(n): return n*(n+1)-(s:=isqrt(n-1))**2*(s+1)+sum((q:=(n-1)//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 22 2023

Formula

G.f.: x/(1 - x)^3 + (x/(1 - x)) * Sum_{k>=1} x^k / (1 - x^k)^2.
a(n) = n*(n + 1)/2 + Sum_{k=1..n-1} sigma(k).
a(n) ~ (6 + Pi^2)*n^2/12. - Vaclav Kotesovec, Mar 10 2020