cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332627 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * k! * k^n.

Original entry on oeis.org

1, 1, 6, 117, 4388, 266065, 23731314, 2923345621, 475364541672, 98623225721601, 25421365316232710, 7969388199705535141, 2985785305877403047820, 1317500933136749853197329, 676266417871227455138941242, 399516621958550611386236160405
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(-x))^k))) \\ Seiichi Manyama, Feb 19 2022

Formula

G.f.: Sum_{k>=0} k! * k^k * x^k / (1 + k*x)^(k+1).
a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^n / (n-k)!.
a(n) ~ c * n! * n^n, where c = A072364 = exp(-exp(-1)). - Vaclav Kotesovec, Jul 10 2021
E.g.f.: Sum_{k>=0} (k*x*exp(-x))^k. - Seiichi Manyama, Feb 19 2022