cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332647 a(n) = 2*a(n-1) + a(n-3) with a(0) = 3, a(1) = 2, a(2) = 4.

Original entry on oeis.org

3, 2, 4, 11, 24, 52, 115, 254, 560, 1235, 2724, 6008, 13251, 29226, 64460, 142171, 313568, 691596, 1525363, 3364294, 7420184, 16365731, 36095756, 79611696, 175589123, 387274002, 854159700, 1883908523, 4155091048, 9164341796, 20212592115, 44580275278, 98324892352
Offset: 0

Views

Author

Greg Dresden, Feb 18 2020

Keywords

Comments

a(n) is the number of ways to tile a bracelet of length n with black trominos, and black or white squares.

Crossrefs

Cf. A008998, A052980. Equals one more than A080204.

Programs

  • Magma
    a:=[3,2,4]; [n le 3 select a[n] else 2*Self(n-1)+Self(n-3):n in [1..33]]; // Marius A. Burtea, Feb 18 2020
    
  • Mathematica
    LinearRecurrence[{2, 0, 1}, {3, 2, 4}, 50]
  • PARI
    Vec((3 - 4*x) / (1 - 2*x - x^3) + O(x^30)) \\ Colin Barker, Feb 18 2020
    
  • PARI
    polsym(x^3-2*x^2-1, 44) \\ Joerg Arndt, May 28 2020

Formula

a(n) = 2*a(n-1) + a(n-3).
a(n) = w1^n + w2^n + w3^n where w1,w2,w3 are the three roots of x^3-2x^2-1=0.
For n>2, a(n) = round(w1^n) for w1 the single real root of x^3-2x^2-1=0.
G.f.: (3 - 4*x) / (1 - 2*x - x^3). - Colin Barker, Feb 18 2020
a(n) = A008998(n) + 2*A008998(n-3) = 3*A008998(n) - 4*A008998(n-1).
a(n) = (5*b(n) - b(n-1) - b(n-2))/2 where b(n) = A052980(n). - Greg Dresden, Mar 10 2020
a(n) = A080204(n) + 1. - Greg Dresden, May 27 2020