cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A080204 Number of fixed points under n-fold inflation for the substitution rule a->abc, b->ab, c->b that underlies the Kolakoski (3,1) sequence.

Original entry on oeis.org

1, 3, 10, 23, 51, 114, 253, 559, 1234, 2723, 6007, 13250, 29225, 64459, 142170, 313567, 691595, 1525362, 3364293, 7420183, 16365730, 36095755, 79611695, 175589122, 387274001, 854159699, 1883908522, 4155091047, 9164341795, 20212592114, 44580275277, 98324892351, 216862376818
Offset: 1

Views

Author

Michael Baake and Uwe Grimm, Mar 20 2003

Keywords

Comments

See Baake-Sing (2002/2003) for the Kolakowski sequence.
a(n) is the number of possible tilings of a bracelet of "thickness" 1 and length n using single-color squares, single-color dominoes, and two-color k-ominoes with k >= 3. - Michael Tulskikh and Greg Dresden, Sep 03 2019; edited by Greg Dresden, Feb 18 2020, May 14 2020, May 18 2020

Crossrefs

Equals one less than A332647.

Programs

  • Magma
    I:=[1,3,10,23]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)+Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Mar 12 2015
  • Mathematica
    CoefficientList[Series[(1 + 3 x^2 - 2 x^3) / ((1 - x) (1 - 2 x - x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 12 2015 *)
  • Maxima
    a(n):=(n*sum(sum(binomial(m,i)*binomial(n-2*i-1,m-1),i,0,(n-m)/2)/m,m,1,n)); /* Vladimir Kruchinin, Mar 10 2015 */
    
  • PARI
    x='x+O('x^66); Vec(x*(1+3*x^2-2*x^3)/((1-x)*(1-2*x-x^3))) \\ Joerg Arndt, Jun 15 2013
    

Formula

Obtained from dynamical zeta function Z(x)=(1-x)/(1-2x-x^3), so that x Z'(x)/Z(x) is the ordinary power series generating function.
From Colin Barker, Jul 02 2012: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - a(n-4).
G.f.: x*(1+3*x^2-2*x^3)/((1-x)*(1-2*x-x^3)). (End)
a(n) = n*Sum_{m=1..n} Sum_{i=0..(n-m)/2} binomial(m,i)*binomial(n-2*i-1,m-1)/m. - Vladimir Kruchinin, Mar 10 2015
a(n) = 2*a(n-1) + a(n-3) + 2. - Greg Dresden, Feb 08 2020
a(n) = w1^n + w2^n + w3^n - 1, for w1, w2, w3 roots of x^3-2x^2-1=0. - Greg Dresden, Feb 18 2020
Showing 1-1 of 1 results.