cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332648 Array read by antidiagonals: T(n,k) is the number of rooted unlabeled k-gonal cacti having n polygons.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 3, 5, 9, 1, 1, 1, 3, 11, 13, 20, 1, 1, 1, 4, 13, 46, 37, 48, 1, 1, 1, 4, 22, 62, 208, 111, 115, 1, 1, 1, 5, 25, 140, 333, 1002, 345, 286, 1, 1, 1, 5, 37, 176, 985, 1894, 5012, 1105, 719, 1, 1, 1, 6, 41, 319, 1397, 7374, 11258, 25863, 3624, 1842, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 18 2020

Keywords

Comments

The number of nodes will be n*(k-1) + 1.

Examples

			Array begins:
======================================================
n\k | 1   2    3     4     5      6      7       8
----+-------------------------------------------------
  0 | 1   1    1     1     1      1      1       1 ...
  1 | 1   1    1     1     1      1      1       1 ...
  2 | 1   2    2     3     3      4      4       5 ...
  3 | 1   4    5    11    13     22     25      37 ...
  4 | 1   9   13    46    62    140    176     319 ...
  5 | 1  20   37   208   333    985   1397    3059 ...
  6 | 1  48  111  1002  1894   7374  11757   31195 ...
  7 | 1 115  345  5012 11258  57577 103376  331991 ...
  8 | 1 286 1105 25863 68990 463670 937179 3643790 ...
  ...
		

Crossrefs

Columns k=1..4 are A000012, A000081(n+1), A003080, A287891.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec((g^k + g^(k%2)*subst(g^(k\2), x, x^2))/2))); concat([1], v)}
    T(n)={Mat(concat([vectorv(n+1,i,1)], vector(n,k,Col(R(n,k)))))}
    { my(A=T(8)); for(n=1, #A, print(A[n,])) }