cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332654 a(n) = Sum_{k=1..n} (k/gcd(n, k))^2.

Original entry on oeis.org

1, 2, 6, 12, 31, 33, 92, 96, 165, 172, 386, 239, 651, 499, 656, 776, 1497, 846, 2110, 1262, 1903, 2037, 3796, 1867, 4181, 3408, 4530, 3673, 7715, 3183, 9456, 6232, 7761, 7754, 10062, 6248, 16207, 10889, 12980, 9906, 22141, 9308, 25586, 15027, 17075, 19483, 33512, 14851
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Comments

Inverse Moebius transform of A053818.

Crossrefs

Programs

  • Magma
    [&+[(k div Gcd(n,k))^2:k in [1..n]]:n in [1..50]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Sum[(k/GCD[n, k])^2, {k, 1, n}], {n, 1, 48}]
    Table[Sum[Sum[If[GCD[k, d] == 1, k^2, 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 48}]

Formula

a(n) = Sum_{k=1..n} (lcm(n, k)/n)^2.
a(n) = Sum_{d|n} Sum_{k=1..d, gcd(k, d) = 1} k^2.