cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332655 a(n) = Sum_{k=1..n} (k/gcd(n, k))^n.

Original entry on oeis.org

1, 2, 10, 84, 1301, 15693, 376762, 6168552, 176787631, 3770427352, 142364319626, 3152758480715, 154718778284149, 4340093860950619, 210971170836848270, 7281694486114555088, 435659030617933827137, 14181121059071691716406, 1052864393300587929716722, 41673907052879908244100770
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[(k div Gcd(n,k))^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Sum[(k/GCD[n, k])^n, {k, 1, n}], {n, 1, 20}]
    Table[Sum[Sum[If[GCD[k, d] == 1, k^n, 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 20}]

Formula

a(n) = Sum_{k=1..n} (lcm(n, k)/n)^n.
a(n) = Sum_{d|n} Sum_{k=1..d, gcd(k, d) = 1} k^n.

A343513 a(n) = Sum_{k=1..n} (k/gcd(n, k))^3.

Original entry on oeis.org

1, 2, 10, 30, 101, 137, 442, 526, 1063, 1202, 3026, 1965, 6085, 4853, 7310, 8654, 18497, 10100, 29242, 17630, 29557, 30857, 64010, 30397, 77601, 60842, 89272, 71913, 164837, 60737, 216226, 139470, 188165, 180338, 265142, 152544, 443557, 282665, 371134, 275726, 672401, 251066, 815410, 461645
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2021

Keywords

Comments

a(n) = 1+n^2*(n-1)^2/4 if n is prime. - Robert Israel, Apr 19 2021

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      add((k/igcd(n,k))^3,k=1..n)
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 19 2021
  • Mathematica
    Table[Sum[(k/GCD[n, k])^3, {k, 1, n}], {n, 1, 44}]
  • PARI
    a(n) = sum(k=1, n, (k/gcd(n, k))^3); \\ Michel Marcus, Apr 17 2021

Formula

a(n) = Sum_{d|n} A053819(d).

A343514 a(n) = Sum_{k=1..n} (k/gcd(n, k))^4.

Original entry on oeis.org

1, 2, 18, 84, 355, 645, 2276, 3192, 7413, 9400, 25334, 18395, 60711, 52747, 88760, 106688, 243849, 137790, 432346, 275570, 499867, 522513, 1151404, 561415, 1542125, 1214436, 1907502, 1569673, 3756719, 1344999, 5274000, 3451216, 4970577, 4690778, 7499154, 4217504, 12948595, 8207261, 11565572
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k/GCD[n, k])^4, {k, 1, n}], {n, 1, 39}]
  • PARI
    a(n) = sum(k=1, n, (k/gcd(n, k))^4); \\ Michel Marcus, Apr 17 2021

Formula

a(n) = Sum_{d|n} A053820(d).
Showing 1-3 of 3 results.