cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343497 a(n) = Sum_{k=1..n} gcd(k, n)^3.

Original entry on oeis.org

1, 9, 29, 74, 129, 261, 349, 596, 789, 1161, 1341, 2146, 2209, 3141, 3741, 4776, 4929, 7101, 6877, 9546, 10121, 12069, 12189, 17284, 16145, 19881, 21321, 25826, 24417, 33669, 29821, 38224, 38889, 44361, 45021, 58386, 50689, 61893, 64061, 76884, 68961, 91089, 79549, 99234, 101781
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Programs

  • Magma
    A343497:= func< n | (&+[d^3*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A343497(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
    
  • Maple
    with(numtheory):
    seq(add(phi(n/d) * d^3, d in divisors(n)), n = 1..50); # Peter Bala, Jan 20 2024
  • Mathematica
    a[n_] := Sum[GCD[k, n]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e - 1)*((p^2 + p + 1)*p^(2*e) - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
    A343497[n_]:= DivisorSum[n, #^3*EulerPhi[n/#] &]; Table[A343497[n], {n, 50}] (* G. C. Greubel, Jun 24 2024 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^3);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^3);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 2));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^4))
    
  • SageMath
    def A343497(n): return sum(k^3*euler_phi(n/k) for k in (1..n) if (k).divides(n))
    [A343497(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * d^3.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_2(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^4.
Dirichlet g.f.: zeta(s-1) * zeta(s-3) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ 45*zeta(3)*n^4 / (2*Pi^4). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*((p^2+p+1)*p^(2*e) - 1)/(p+1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i, j, k <= n} gcd(i, j, k, n) = Sum_{d divides n} d * J_3(n/d), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 20 2024

A343514 a(n) = Sum_{k=1..n} (k/gcd(n, k))^4.

Original entry on oeis.org

1, 2, 18, 84, 355, 645, 2276, 3192, 7413, 9400, 25334, 18395, 60711, 52747, 88760, 106688, 243849, 137790, 432346, 275570, 499867, 522513, 1151404, 561415, 1542125, 1214436, 1907502, 1569673, 3756719, 1344999, 5274000, 3451216, 4970577, 4690778, 7499154, 4217504, 12948595, 8207261, 11565572
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k/GCD[n, k])^4, {k, 1, n}], {n, 1, 39}]
  • PARI
    a(n) = sum(k=1, n, (k/gcd(n, k))^4); \\ Michel Marcus, Apr 17 2021

Formula

a(n) = Sum_{d|n} A053820(d).
Showing 1-2 of 2 results.