A332734 Least k such that Sum_{i=0..n} k^i / i! is a positive integer.
1, 1, 2, 3, 2, 30, 24, 21, 90, 126, 210, 660, 462, 8580, 6006, 1980, 4410, 157080, 39270, 2106720, 510510, 5087250, 1963500, 91861770, 29099070, 1806420, 17117100, 48498450, 135795660, 340510170, 562582020, 5642366730, 1539968430, 47683165530, 17440042620
Offset: 0
Keywords
Examples
For n = 4, k > 0 if Sum_{i=0..4} k^i / i! is positive. a(4) = 2 since 1 + 1/1 + 1/2 + 1/6 + 1/24 = 65/24 is not an integer and 1 + 2/1 + 4/2 + 8/6 + 16/24 = 7 is an integer.
Links
- Bert Dobbelaere, Table of n, a(n) for n = 0..100
Programs
-
PARI
a(n) = for(k=1, oo, if((s=sum(i=2, n, k^i/i!))==floor(s), return(k)));
-
PARI
a(n) = {if (n==0, return (1)); my(m = factorback(factorint(n)[, 1]), k = m); while (denominator(sum(i=0, n, k^i/i!)) != 1, k += m); k;} \\ Michel Marcus, Mar 06 2020
Formula
a(n) <= A034386(n).
Extensions
a(24)-a(30) from Michel Marcus, Mar 06 2020
More terms from Bert Dobbelaere, Mar 09 2020
Comments