cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A333072 Least k such that Sum_{i=1..n} k^i / i is a positive integer.

Original entry on oeis.org

1, 2, 6, 6, 30, 10, 70, 70, 210, 168, 1848, 1848, 18018, 8580, 2574, 2574, 102102, 102102, 831402, 2771340, 3233230, 587860, 43266496, 117630786, 162249360, 145088370, 145088370, 2897310, 672175920, 672175920, 18232771830, 18232771830, 44279588730, 8886561060
Offset: 1

Views

Author

Jinyuan Wang, Mar 10 2020

Keywords

Comments

Note that the denominator of (Sum_{i=1..n} k^i/i) - k^p/p can never be divisible by p, where n/2 < p <= n. Therefore, for the expression to be an integer, such p must divide k. Thus, a(n) = k is divisible by A055773(n).

Crossrefs

Programs

  • PARI
    a(n) = {my(m = prod(i=primepi(n/2)+1, primepi(n), prime(i)), k = m); while (denominator(sum(i=2, n, k^i/i)) != 1, k += m); k; }
    
  • Python
    from sympy import primorial, lcm
    def A333072(n):
        f = 1
        for i in range(1,n+1):
            f = lcm(f,i)
        f, glist = int(f), []
        for i in range(1,n+1):
            glist.append(f//i)
        m = 1 if n < 2 else primorial(n,nth=False)//primorial(n//2,nth=False)
        k = m
        while True:
            p,ki = 0, k
            for i in range(1,n+1):
                p = (p+ki*glist[i-1]) % f
                ki = (k*ki) % f
            if p == 0:
                return k
            k += m # Chai Wah Wu, Apr 04 2020

Formula

a(n) <= A034386(n).

A330030 Least k such that Sum_{i=0..n} k^n / i! is a positive integer.

Original entry on oeis.org

1, 1, 2, 3, 6, 30, 30, 42, 210, 42, 210, 2310, 2310, 30030, 30030, 30030, 30030, 39270, 510510, 1939938, 9699690, 9699690, 9699690, 17160990, 223092870, 903210, 223092870, 223092870, 223092870, 6469693230, 6469693230, 200560490130, 200560490130, 10555815270, 200560490130
Offset: 0

Views

Author

Jinyuan Wang, Mar 07 2020

Keywords

Comments

Least k > 0 such that k^n/A061355(n) is an integer.

Examples

			For n = 7, the denominator of Sum_{i=0..7} 1/i! is 252 = 2^2*3^2*7, so a(7) = 2*3*7 = 42.
		

Crossrefs

Programs

  • PARI
    a(n) = factorback(factorint(denominator(sum(i=2, n, 1/i!)))[, 1]);

Formula

a(n) = A007947(A061355(n)).

A333074 Least k such that Sum_{i=0..n} (-k)^i / i! is a positive integer.

Original entry on oeis.org

1, 1, 2, 3, 4, 30, 6, 28, 120, 84, 210, 1650, 210, 11440, 6930, 630, 9240, 353430, 93450, 746130, 1616160, 746130, 1021020, 11104170, 56705880, 9722790, 48498450, 174594420, 87297210, 222071850, 2114532420, 11480905800, 5375910540, 42223261080, 5603554110, 2043061020
Offset: 0

Views

Author

Jinyuan Wang, Mar 31 2020

Keywords

Comments

Note that Sum_{i=0..n-1} (-k)^i / i! has a denominator that divides (n-1)! for n > 0. Therefore, for the expression to be an integer, (-k)^n / n! must have a denominator that divides (n-1)!. Thus, k^n is divisible by n, a(n) = k is divisible by A007947(n).
a(n) is the smallest integer k such that Gamma(n+1,-k)/(n!*e^k) is a positive integer, where Gamma is the upper incomplete gamma function. - Chai Wah Wu, Apr 01 2020

Crossrefs

Programs

  • PARI
    a(n) = {my(m = factorback(factorint(n)[, 1]), k = m); while(denominator(sum(i=2, n, (-k)^i/i!)) != 1, k += m); !n+k; }
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import primefactors, factorial
    def A333074(n):
        f, g = int(factorial(n)), []
        for i in range(n+1):
            g.append(int(f//factorial(i)))
        m = 1 if n < 2 else reduce(mul, primefactors(n))
        k = m
        while True:
            p, ki = 0, 1
            for i in range(n+1):
                p = (p+ki*g[i]) % f
                ki = (-k*ki) % f
            if p == 0:
                return k
            k += m # Chai Wah Wu, Apr 01 2020

Formula

a(n) <= A034386(n).

Extensions

a(27)-a(35) from Chai Wah Wu, Apr 01 2020
Showing 1-3 of 3 results.