cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332759 Number of involutions (plus identity) in a fixed Sylow 2-subgroup of the symmetric group of degree n.

Original entry on oeis.org

1, 1, 2, 2, 6, 6, 12, 12, 44, 44, 88, 88, 264, 264, 528, 528, 2064, 2064, 4128, 4128, 12384, 12384, 24768, 24768, 90816, 90816, 181632, 181632, 544896, 544896, 1089792, 1089792, 4292864, 4292864, 8585728, 8585728, 25757184, 25757184, 51514368, 51514368
Offset: 0

Views

Author

Nick Krempel, Feb 22 2020

Keywords

Comments

As the Sylow 2-subgroups of S_(2n) are isomorphic to those of S_(2n+1), the terms of this sequence come in pairs.
Also the number of involutory automorphisms (including identity) of the full binary tree with n leaves (hence 2n-1 vertices) in which all left children are complete (perfect) binary trees.

Examples

			For n=4, the a(4)=6 elements satisfying x^2=1 in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are the identity and (13), (24), (12)(34), (13)(24), (14)(23).
		

Crossrefs

Cf. A000085.

Programs

  • Maple
    b:= proc(n) b(n):=`if`(n=0, 1, b(n-1)^2+2^(2^(n-1)-1)) end:
    a:= n-> (l-> mul(`if`(l[i]=1, b(i-1), 1), i=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 27 2020
  • Mathematica
    Join[{1}, Block[{nn = 33, s}, s = Nest[Append[#1, #1[[-1]]^2 + 2^(2^(#2 - 1) - 1)] & @@ {#, Length@ #} &, {1}, Ceiling@ Log2@ nn]; Array[Times @@ s[[Position[Reverse@ IntegerDigits[#, 2], 1][[All, 1]] ]] &, nn]]] (* Michael De Vlieger, Feb 25 2020 *)

Formula

a(n) = Product(A332757(k)) where k ranges over the positions of 1 bits in the binary expansion of n.
a(n) = big-Theta(C^n) for C = 1.6116626399..., i.e., A*C^n < a(n) < B*C^n for constants A, B (but it's not the case that a(n) ~ C^n as lim inf a(n)/C^n and lim sup a(n)/C^n differ).
Conjecture: B=1 and A=0.409091077245262341747187571213565366725933766222357989... - Vaclav Kotesovec, Feb 26 2020

Extensions

More terms from Alois P. Heinz, Feb 27 2020