A332759 Number of involutions (plus identity) in a fixed Sylow 2-subgroup of the symmetric group of degree n.
1, 1, 2, 2, 6, 6, 12, 12, 44, 44, 88, 88, 264, 264, 528, 528, 2064, 2064, 4128, 4128, 12384, 12384, 24768, 24768, 90816, 90816, 181632, 181632, 544896, 544896, 1089792, 1089792, 4292864, 4292864, 8585728, 8585728, 25757184, 25757184, 51514368, 51514368
Offset: 0
Keywords
Examples
For n=4, the a(4)=6 elements satisfying x^2=1 in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are the identity and (13), (24), (12)(34), (13)(24), (14)(23).
Crossrefs
Cf. A000085.
Programs
-
Maple
b:= proc(n) b(n):=`if`(n=0, 1, b(n-1)^2+2^(2^(n-1)-1)) end: a:= n-> (l-> mul(`if`(l[i]=1, b(i-1), 1), i=1..nops(l)))(Bits[Split](n)): seq(a(n), n=0..50); # Alois P. Heinz, Feb 27 2020
-
Mathematica
Join[{1}, Block[{nn = 33, s}, s = Nest[Append[#1, #1[[-1]]^2 + 2^(2^(#2 - 1) - 1)] & @@ {#, Length@ #} &, {1}, Ceiling@ Log2@ nn]; Array[Times @@ s[[Position[Reverse@ IntegerDigits[#, 2], 1][[All, 1]] ]] &, nn]]] (* Michael De Vlieger, Feb 25 2020 *)
Formula
a(n) = Product(A332757(k)) where k ranges over the positions of 1 bits in the binary expansion of n.
a(n) = big-Theta(C^n) for C = 1.6116626399..., i.e., A*C^n < a(n) < B*C^n for constants A, B (but it's not the case that a(n) ~ C^n as lim inf a(n)/C^n and lim sup a(n)/C^n differ).
Conjecture: B=1 and A=0.409091077245262341747187571213565366725933766222357989... - Vaclav Kotesovec, Feb 26 2020
Extensions
More terms from Alois P. Heinz, Feb 27 2020
Comments