A332786 a(n) = numerator(-1/n + Sum_{k=1..n} 2^(k-1)/k).
0, 3, 3, 61, 25, 137, 343, 32663, 2357, 74689, 66671, 5299069, 2416531, 115545821, 106974277, 637525199, 74575583, 1588674349, 4496071973, 3234136824109, 1535024393629, 5843920343363, 5575228585159, 1961561381531581, 93953561866435, 9016382638527647, 2888981280567587, 200248741591132607, 96525489421136333
Offset: 1
Examples
a(5) = numerator(-1/5 + 1/1+2/2+4/3+8/4+16/5) = numerator(128/15 - 1/5) = numerator(25/3) = 25.
Links
- Robert Israel, Table of n, a(n) for n = 1..1367
Programs
-
Maple
f:= proc(n) local k; numer(-1/n + add(2^(k-1)/k,k=1..n)) end proc: map(f, [$1..30]); # Robert Israel, Sep 15 2024
-
Mathematica
n = 30; Numerator[Accumulate @ Table[(2^(k-1))/k, {k, 1, n}] - 1/Range[n]] (* Amiram Eldar, Feb 24 2020 *)
-
PARI
a(n) = numerator(-1/n + sum(k=1, n, 2^(k-1)/k)); \\ Michel Marcus, Feb 24 2020
Formula
Extensions
More terms from Amiram Eldar, Feb 24 2020
Comments