cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332863 Total binary weight squared of all A005251(n) binary sequences of length n not containing any isolated 1's.

Original entry on oeis.org

0, 0, 4, 17, 46, 116, 288, 683, 1548, 3403, 7320, 15461, 32146, 65954, 133800, 268804, 535434, 1058533, 2078732, 4057858, 7878814, 15223495, 29285368, 56109673, 107108104, 203766859, 386443052, 730768044, 1378180568, 2592664120, 4866008208, 9112796113
Offset: 0

Views

Author

Steven Finch, Feb 27 2020

Keywords

Examples

			The only two 2-bitstrings without isolated 1's are 00 and 11.  The bitsums squared of these are 0 and 4.  Adding these give a(2)=4.
The only four 3-bitstrings without isolated 1's are 000, 011, 110 and 111.  The bitsums squared of these are 0, 4, 4 and 9.  Adding these give a(3)=17.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(4-7*x+4*x^2+3*x^3-x^4)/(1-2*x+x^2-x^3)^3 )); // G. C. Greubel, Apr 13 2022
    
  • Mathematica
    LinearRecurrence[{6,-15,23,-27,24,-16,9,-3,1}, {0,0,4,17,46,116,288,683,1548}, 40] (* G. C. Greubel, Apr 13 2022 *)
  • SageMath
    def A332863_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2*(4-7*x+4*x^2+3*x^3-x^4)/(1-2*x+x^2-x^3)^3 ).list()
    A332863_list(40) # G. C. Greubel, Apr 13 2022

Formula

G.f.: x^2*(4-7*x+4*x^2+3*x^3-x^4)/(1-2*x+x^2-x^3)^3.
a(n) = Sum_{k=1..n} k^2 * A097230(n,k). - Alois P. Heinz, Mar 03 2020