cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332868 Number of involutions (plus identity) in a fixed Sylow 2-subgroup of the symmetric group of degree 2n.

Original entry on oeis.org

1, 2, 6, 12, 44, 88, 264, 528, 2064, 4128, 12384, 24768, 90816, 181632, 544896, 1089792, 4292864, 8585728, 25757184, 51514368, 188886016, 377772032, 1133316096, 2266632192, 8860471296, 17720942592, 53162827776, 106325655552, 389860737024, 779721474048, 2339164422144
Offset: 0

Views

Author

Nick Krempel, Feb 27 2020

Keywords

Comments

Bisection of A332759.

Examples

			For n=2, the a(2)=6 elements satisfying x^2=1 in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are the identity and (13), (24), (12)(34), (13)(24), (14)(23).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):=`if`(n=0, 1, b(n-1)^2+2^(2^(n-1)-1)) end:
    a:= n-> (l-> mul(`if`(l[i]=1, b(i), 1), i=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 27 2020
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, b[n - 1]^2 + 2^(2^(n - 1) - 1)];
    a[n_] := Function[l, Product[If[l[[i]] == 1, b[i], 1], {i, 1, Length[l]}]][ Reverse @ IntegerDigits[n, 2]];
    a /@ Range[0, 35] (* Jean-François Alcover, Apr 10 2020, after Alois P. Heinz *)
  • PARI
    a(n)={my(v=vector(logint(max(1,n), 2)+1)); v[1]=2; for(n=2, #v, v[n]=v[n-1]^2 + 2^(2^(n-1)-1)); prod(k=1, #v, if(bittest(n,k-1), v[k], 1))} \\ Andrew Howroyd, Feb 27 2020

Formula

a(n) = A332759(2*n).
a(n) = Product(A332757(k+1)) where k ranges over the positions of 1 bits in the binary expansion of n.
a(n) = big-Theta(C^n) for C = 2.59745646488..., i.e., A*C^n < a(n) < B*C^n for constants A, B (but it's not the case that a(n) ~ C^n as lim inf a(n)/C^n and lim sup a(n)/C^n differ).

Extensions

Terms a(17) and beyond from Andrew Howroyd, Feb 27 2020