A332877 Arrange the first n primes in a circle in any order. a(n) is the minimum value of the largest product of two consecutive primes out of all possible orders.
6, 15, 21, 35, 55, 77, 91, 143, 187, 221, 253, 323, 391, 493, 551, 667, 713, 899, 1073, 1189, 1271, 1517, 1591, 1763, 1961, 2183, 2419, 2537, 2773, 3127, 3233, 3599, 3953, 4189, 4331, 4757, 4897, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633, 8989, 9797, 9991, 10403, 10807, 11303
Offset: 2
Keywords
Examples
Here are the different ways to arrange the first 4 primes in a circle. 2-3 | | Products: 6, 21, 35, 10. Largest product: 35. 5-7 . 2-3 | | Products: 6, 15, 35, 14. Largest product: 35. 7-5 . 2-5 | | Products: 10, 15, 21, 14. Largest product: 21. 7-3 The minimum largest product is 21, so a(4)=21.
Links
- Giovanni Resta, Examples for a(2)-a(22)
Programs
-
Mathematica
primes[n_]:=Prime/@Range[n]; partition[n_]:=Partition[primes[n],UpTo[Ceiling[n/2]]]; riffle[n_]:=Riffle[partition[n][[1]],Reverse[partition[n][[2]]]]; a[n_]:=Max[Table[riffle[n][[i]]*riffle[n][[i+1]],{i,1,n-1}]]; a/@Range[2,60] (* Ivan N. Ianakiev, Apr 20 2020 *)
-
PARI
a(n) = {my(x = oo); for (k=1, (n-1)!, my(vp = Vec(numtoperm(n, k-1))); vp = apply(x->prime(x), vp); x = min(x, max(vp[1]*vp[n-1], vecmax(vector(n-1, j, vp[j]*vp[j+1]))));); x;} \\ Michel Marcus, Apr 14 2020
Formula
Probably a(n) = A332765(n+1) for n > 4.
Extensions
a(12)-a(13) from Michel Marcus, Apr 14 2020
a(14) from Alois P. Heinz, Apr 15 2020
a(15)-a(22) from Giovanni Resta, Apr 19 2020
More terms from Ivan N. Ianakiev, Apr 20 2020
Comments