cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332892 Decimal expansion of Sum_{k>=0} 1/(6*k)!.

Original entry on oeis.org

1, 0, 0, 1, 3, 8, 8, 8, 9, 0, 9, 7, 6, 5, 6, 4, 7, 4, 3, 8, 6, 7, 7, 7, 0, 0, 8, 4, 4, 0, 9, 7, 3, 7, 4, 0, 9, 2, 7, 8, 6, 5, 6, 1, 7, 3, 5, 5, 5, 7, 8, 1, 1, 4, 2, 0, 0, 6, 7, 9, 3, 1, 7, 0, 3, 1, 8, 8, 5, 3, 1, 1, 5, 4, 2, 0, 9, 6, 3, 8, 9, 7, 8, 4, 4, 0, 8
Offset: 1

Views

Author

Bernard Schott, Mar 02 2020

Keywords

Comments

For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity.

Examples

			1.001388890976564743867770084409737409278656173555781142...
		

References

  • Serge Francinou, Hervé Gianella, Serge Nicolas, Exercices de Mathématiques, Oraux X-ENS, Analyse 2, problème 3.10, p. 182, Cassini, Paris, 2004

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), this sequence (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf(sum(1/(6*n)!,n=0..infinity),150);
  • Mathematica
    RealDigits[(1/3)*(Cosh[1] + 2*Cosh[1/2]*Cos[Sqrt[3]/2]), 10, 120][[1]] (* Amiram Eldar, May 31 2023 *)
  • PARI
    sumpos(k=0, 1/(6*k)!) \\ Michel Marcus, Mar 02 2020

Formula

Equals (1/3) * (cosh(1) + 2*cosh(1/2)*cos((sqrt(3))/2)).
Sum_{k>=0} (-1)^k / (6*k)! = (cos(1) + 2*cos(1/2)*cosh(sqrt(3)/2))/3 = 0.9986111131987866537... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(720 - 720/(665281 - 665280/(13366081 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (6*n)*(6*n - 1)*(6*n - 2)*(6*n - 3)*(6*n - 4)*(6*n - 5) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024