cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332937 a(n) is the greatest common divisor of the first two terms of row n of the Wythoff array (A035513).

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 5, 1, 1, 6, 1, 1, 7, 1, 1, 8, 1, 1, 9, 2, 1, 10, 1, 1, 11, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 5, 4, 3, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 7, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 8, 1, 3, 1, 2, 1, 1, 5, 12, 1, 2, 1, 1, 1, 2, 1, 13, 3, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2020

Keywords

Comments

a(n) is also the gcd of every pair of consecutive terms of row n of the Wythoff array. Conjectures: the maximal number of consecutive 1's is 5, and the limiting proportion of 1's exists. See A332938.
If seems that for all primes p > 3, a(1+p) = 1. - Antti Karttunen, Jan 15 2025

Examples

			See A332938.
		

Crossrefs

Cf. A000045, A173027, A173028, A035513, A332938 (positions of 1's).

Programs

  • Mathematica
    W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; (* A035513 *)
    t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}]  (* A332937 *)
    Flatten[Position[t, 1]]  (* A332938 *)
  • PARI
    T(n, k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
    a(n) = gcd(T(n, 0), T(n, 1)); \\ Michel Marcus, Mar 03 2020

Extensions

More terms from Antti Karttunen, Jan 15 2025