cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333039 Composites m such that sigma(m) < sigma(m-1).

Original entry on oeis.org

9, 21, 25, 27, 33, 35, 39, 45, 46, 49, 51, 55, 57, 65, 69, 77, 81, 85, 87, 91, 93, 95, 99, 105, 106, 111, 115, 117, 118, 119, 121, 123, 125, 129, 133, 141, 143, 145, 153, 155, 159, 161, 165, 166, 169, 171, 175, 177, 183, 185, 187, 189, 201
Offset: 1

Views

Author

Bernard Schott, Mar 12 2020

Keywords

Comments

As all primes p >= 5 satisfy sigma(p) < sigma(p-1) [see A333038], this sequence is reserved for composite numbers.
This sequence is infinite because all squares of primes p, p >= 3 are terms.
Composites such that sigma(m) = sigma(m-1) are in A231546.

Examples

			sigma(77) = 1+7+11+77 = 96 < sigma(76) = 1+2+4+19+38+76 = 140, hence composite 77 is a term.
sigma(135) = 1+3+5+9+15+27+45+135 = 240 > sigma(134) = 1+2+67+134 = 204, hence composite 135 is not a term.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 620 pp. 82, 280, Ellipses Paris 2004

Crossrefs

Programs

  • Maple
    filter:= m -> not isprime(m) and numtheory:-sigma(m) < numtheory:-sigma(m-1) : select(filter, [$1..500]);
  • Mathematica
    Select[Range[200], CompositeQ[#] && DivisorSigma[1, #] < DivisorSigma[1, # - 1] &] (* Amiram Eldar, Mar 12 2020 *)
  • PARI
    isok(m) = (m>1) && !isprime(m) && (sigma(m) < sigma(m-1)); \\ Michel Marcus, Mar 15 2020