A333042 G.f.: exp(Sum_{k>=1} (4*k)!/k!^4 * x^k/k).
1, 24, 1548, 155744, 19893054, 2937661200, 477691374152, 83161733788992, 15230338934722749, 2900395347525785464, 569718535329796732476, 114759815105897160007392, 23602808330272138320592494, 4940203531008336735249385488, 1049571237547858314991495867848
Offset: 0
Programs
-
Mathematica
CoefficientList[Series[Exp[Sum[(4*k)!/k!^4*x^k/k, {k, 1, 20}]], {x, 0, 20}], x] CoefficientList[Series[Exp[24*x*HypergeometricPFQ[{1, 1, 5/4, 3/2, 7/4}, {2, 2, 2, 2}, 256*x]], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2024 *)
Formula
a(n) ~ c * 4^(4*n)/n^(5/2), where c = exp(3*HypergeometricPFQ[{1, 1, 5/4, 3/2, 7/4}, {2, 2, 2, 2}, 1] / 32) / (sqrt(2)*Pi^(3/2)) = 0.14496966... - Vaclav Kotesovec, Mar 06 2020, updated Feb 16 2024
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A008977(k) * a(n-k). - Seiichi Manyama, Feb 09 2024
Comments