A333079 The largest nontrivial divisor of n equals the sum of the other nontrivial divisors of n.
345, 1645, 6489, 8041, 23881, 88473, 115957, 342637, 3256261, 4114285, 4646101, 5054221, 13384681, 17897737, 20901553, 23807821, 42081409, 64580041, 65380921, 70366153, 82175857, 110344621, 137331565, 164109901, 286078081, 331957897, 366611617, 367891717, 489645157
Offset: 1
Keywords
Examples
The nontrivial divisors of 345 are 3, 5, 15, 23, 69, 115, the largest of which, 115, is equal to the sum of the other nontrivial divisors 3, 5, 15, 23, 69.
Crossrefs
Cf. A032742.
Programs
-
Mathematica
Select[Range[10^5], 2 # / FactorInteger[#][[1, 1]] == DivisorSigma[1, #] - # - 1 &] (* Giovanni Resta, Mar 07 2020 *) lndQ[n_]:=With[{c=TakeDrop[Rest[Most[Divisors[n]]],-1]},c[[1,1]]==Total[c[[2]]]]; Select[Range[ 51*10^5],lndQ]//Quiet (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Jan 16 2024 *)
-
PARI
for(k=2,5*10^7,my(d=divisors(k)); if(#d>2&&d[#d-1]==vecsum(d[2..#d-2]), print1(k,", "))) \\ Hugo Pfoertner, Mar 07 2020
Extensions
More terms from Giovanni Resta, Mar 07 2020
Comments