A333087 Array (p(n,k)) read by antidiagonals: p(n,k) is the index of the prime in position (n,k) in the array A333086.
1, 2, 4, 3, 5, 9, 6, 10, 12, 7, 24, 15, 25, 21, 8, 51, 46, 37, 43, 11, 13, 251, 98, 271, 140, 32, 28, 20, 3121, 329, 1430, 35505, 231, 40, 93, 22, 42613, 500, 5185, 85968, 349, 130, 311, 151, 35
Offset: 1
Examples
Northwest corner: 1 2 3 6 24 51 4 5 10 15 46 98 9 12 25 37 271 1430 7 21 43 140 35505 85968 8 11 32 231 349 4410 13 28 40 130 5655 20908 The 4th prime is 7, which occurs in the position (2,1) in A333086, so that p(2,1) = 4.
Programs
-
Mathematica
W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 100}]; u = Flatten[Position[t, 1]] ; v[n_, k_] := W[u[[n]], k]; p[n_] := Table[v[n, k], {k, 1, 40}]; TableForm[Table[Select[p[n], PrimeQ], {n, 1, 10}]] t1 = Table[PrimePi[Select[p[n], PrimeQ]], {n, 1, 10}] tt[n_, k_] := t1[[n]][[k]]; Table[tt[n, k], {n, 1, 10}, {k, 1, 10}] (* A333087 array *) ttt = Table[tt[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* A333087 sequence *)
Comments