cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333240 Decimal expansion of Product_{primes p == 2 (mod 3)} 1/(1 - 1/p^2).

Original entry on oeis.org

1, 4, 1, 4, 0, 6, 4, 3, 9, 0, 8, 9, 2, 1, 4, 7, 6, 3, 7, 5, 6, 5, 5, 0, 1, 8, 1, 9, 0, 7, 9, 8, 2, 9, 3, 7, 9, 9, 0, 7, 6, 9, 5, 0, 6, 9, 3, 9, 3, 1, 6, 2, 1, 7, 5, 0, 3, 9, 9, 2, 4, 9, 6, 2, 4, 2, 3, 9, 2, 8, 1, 0, 6, 9, 9, 2, 0, 8, 8, 4, 9, 9, 4, 5, 3, 7, 5, 4, 8, 5, 8, 5, 0, 2, 4, 7, 5, 1, 1, 4, 2, 0, 0, 2
Offset: 1

Views

Author

Peter Luschny, May 13 2020

Keywords

Comments

The range of product are the primes of the form 3*k - 1 (A003627).
See a comment of R. J. Mathar in A175646.

Examples

			1.414064390892147637565501819079829379907695069393162175039924962423928106992...
		

Crossrefs

Programs

  • Maple
    z := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))):
    x := n -> (z(2^n)*(3^(2^n)-1)*sqrt(3)/2)^(1/2^n)/3:
    evalf(mul(x(n), n=1..8), 105); # Peter Luschny, Jan 17 2021
  • Mathematica
    digits = 104; precision = digits + 10;
    prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
    Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
    Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
    Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
    gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
    pgv = Product[gv[2^n*2]^(2^-(n + 1)), {n, 0, 11}] // N[#, precision]&;
    RealDigits[pgv, 10, digits][[1]]
    (* Jean-François Alcover, Jan 12 2021, after PARI code due to Artur Jasinski *)
    z[n_] := Zeta[n]/Im[PolyLog[n, (-1)^(2/3)]];
    x[n_] := (z[2^n] (3^(2^n) - 1) Sqrt[3]/2)^(1/2^n)/3;
    N[Product[x[n], {n, 8}], 105] (* Peter Luschny, Jan 17 2021 *)

Formula

A333240 * A175646 = (4*Pi^2)/27 = A214549.
A301429 = sqrt(A333240) / 12^(1/4).
Equals Sum_{k>=1} 1/A004612(k)^2. - Amiram Eldar, Sep 27 2020

Extensions

Last 5 digits corrected by Jean-François Alcover, Jan 12 2021
Better name by Peter Luschny, Jan 17 2021