cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A175646 Decimal expansion of the Product_{primes p == 1 (mod 3)} 1/(1 - 1/p^2).

Original entry on oeis.org

1, 0, 3, 4, 0, 1, 4, 8, 7, 5, 4, 1, 4, 3, 4, 1, 8, 8, 0, 5, 3, 9, 0, 3, 0, 6, 4, 4, 4, 1, 3, 0, 4, 7, 6, 2, 8, 5, 7, 8, 9, 6, 5, 4, 2, 8, 4, 8, 9, 0, 9, 9, 8, 8, 6, 4, 1, 6, 8, 2, 5, 0, 3, 8, 4, 2, 1, 2, 2, 2, 2, 4, 5, 8, 7, 1, 0, 9, 6, 3, 5, 8, 0, 4, 9, 6, 2, 1, 7, 0, 7, 9, 8, 2, 6, 2, 0, 5, 9, 6, 2, 8, 9, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The Euler product of the Riemann zeta function at 2 restricted to primes in A002476, which is the inverse of the infinite product (1-1/7^2)*(1-1/13^2)*(1-1/19^2)*...
There is a complementary Product_{primes p == 2 (mod 3)} 1/(1-1/p^2) = A333240 = 1.4140643908921476375655018190798... such that (this constant here)*1.4140643.../(1-1/3^2) = zeta(2) = A013661.
Because 1/(1-p^(-2)) = 1+1/(p^2-1), the complementary 1.414064... also equals Product_{primes p == 2 (mod 3)} (1+1/(p^2-1)), which appears in Eq. (1.8) of [Dence and Pomerance]. - R. J. Mathar, Jan 31 2013

Examples

			1.03401487541434188053903064441304762857896...
		

Crossrefs

Programs

  • Maple
    z := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))):
    x := n -> (z(2^n)*(3^(2^n)-1)*sqrt(3)/2)^(1/2^n) / 3:
    evalf(4*Pi^2 / (27*mul(x(n), n=1..8)), 106); # Peter Luschny, Jan 17 2021
  • Mathematica
    digits = 105;
    precision = digits + 5;
    prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
    Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
    Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
    Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
    gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
    pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
    pA = Pi^2/9/pB ;
    RealDigits[pA, 10, digits][[1]]
    (* Jean-François Alcover, Jan 11 2021, after PARI code due to Artur Jasinski *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[3,1,2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
    z[n_] := Zeta[n] / Im[PolyLog[n, (-1)^(2/3)]];
    x[n_] := (z[2^n] (3^(2^n) - 1) Sqrt[3]/2)^(1/2^n) / 3;
    N[4 Pi^2 / (27 Product[x[n], {n, 8}]), 106] (* Peter Luschny, Jan 17 2021 *)

Formula

Equals 2*Pi^2 / (3^(7/2) * A301429^2). - Vaclav Kotesovec, May 12 2020
Equals Sum_{k>=1} 1/A004611(k)^2. - Amiram Eldar, Sep 27 2020

Extensions

More digits from Vaclav Kotesovec, May 12 2020 and Jun 27 2020

A301429 Decimal expansion of an analog of the Landau-Ramanujan constant for Loeschian numbers.

Original entry on oeis.org

6, 3, 8, 9, 0, 9, 4, 0, 5, 4, 4, 5, 3, 4, 3, 8, 8, 2, 2, 5, 4, 9, 4, 2, 6, 7, 4, 9, 2, 8, 2, 4, 5, 0, 9, 3, 7, 5, 4, 9, 7, 5, 5, 0, 8, 0, 2, 9, 1, 2, 3, 3, 4, 5, 4, 2, 1, 6, 9, 2, 3, 6, 5, 7, 0, 8, 0, 7, 6, 3, 1, 0, 0, 2, 7, 6, 4, 9, 6, 5, 8, 2, 4, 6, 8, 9, 7, 1, 7, 9, 1, 1, 2, 5, 2, 8, 6, 6, 4, 3, 8, 8, 1, 4, 1, 6
Offset: 0

Views

Author

Michel Waldschmidt, Mar 21 2018

Keywords

Comments

This is the decimal expansion of the number alpha such that the number of positive integers <= N which are represented by the quadratic form x^2 + xy + y^2 is asymptotic to alpha*N/sqrt(log(N)).

Examples

			0.638909405445343882254942674928245093754975508...
		

References

  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 99 (K3).

Crossrefs

Programs

  • Maple
    Digits:= 1000: A:= 2^(-1/2)*3^(-1/4):
    for t to 40000 do p:= ithprime(t): if `mod`(p, 3) = 2 then
    A:= evalf(A/(1-1/p^2)^(1/2)) end if end do: A;
    # Alternative:
    z := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))):
    x := n -> (z(2^n)*(3^(2^n)-1)*sqrt(3)/2)^(1/2^n)/3:
    evalf(sqrt(mul(x(n), n=1..8))/12^(1/4), 110); # Peter Luschny, Jan 17 2021
  • Mathematica
    digits = 106;
    precision = digits + 10;
    prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
    Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
    Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
    Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
    gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
    pgv = Product[gv[2^n*2]^(2^-(n + 1)), {n, 0, 11}] // N[#, precision]&;
    RealDigits[Sqrt[pgv]/12^(1/4), 10, digits][[1]]
    (* Jean-François Alcover, Jan 12 2021, after PARI code due to Artur Jasinski *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi * Sqrt[2] / (3^(7/4) * Sqrt[Z[3, 1, 2]]), digits]], 10, digits-1][[1]]
    (* Vaclav Kotesovec, Jan 15 2021 *)
    z[n_] := Zeta[n]/Im[PolyLog[n, (-1)^(2/3)]];
    x[n_] := (z[2^n] (3^(2^n) - 1) Sqrt[3]/2)^(1/2^n)/3;
    N[Sqrt[Product[x[n], { n, 8}]]/12^(1/4), 110] (* Peter Luschny, Jan 17 2021 *)

Formula

Equals 2^(-1/2)*3^(-1/4)*Product_{p == 2 (mod 3), p prime} (1 - p^(-2))^(-1/2).
One can base the definition on p(n) = A003627(n). Setting r(n) = (Product_{k=1..n} p(k)^2) / (Product_{k=1..n} (p(k)^2 - 1)) the rational sequence r(n) starts 4/3, 25/18, 605/432, 174845/124416, ... -> L. Then A301429 = sqrt(L)/12^(1/4). - Peter Luschny, Mar 29 2018 [This L is now A333240. - Peter Luschny, Jan 14 2021]
Equals Pi*sqrt(2) / (3^(7/4) * sqrt(A175646)). - Vaclav Kotesovec, May 12 2020
Equals 12^(-1/4)*Product_{n>=0} a(-n-2)*b(2^(n+1))^(2^(-n-2)) where a(n) = 3^(2^(n-1))*(1/2-3^(-2^(-n-1))/2)^(2^n) and b(n) = zeta(n)/Im(polylog(n, (-1)^(2/3))). - Peter Luschny, Jan 14 2021

Extensions

Offset corrected by Vaclav Kotesovec, Mar 25 2018
a(6)-a(10) from Peter Luschny, Mar 29 2018
More digits from Ettahri article added by Vaclav Kotesovec, May 12 2020
More digits from Vaclav Kotesovec, Jun 27 2020

A340004 Decimal expansion of Product_{primes p == 1 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 0, 1, 0, 9, 1, 5, 1, 6, 0, 6, 0, 1, 0, 1, 9, 5, 2, 2, 6, 0, 4, 9, 5, 6, 5, 8, 4, 2, 8, 9, 5, 1, 4, 9, 2, 0, 9, 8, 4, 5, 3, 8, 6, 2, 7, 5, 8, 1, 7, 3, 8, 5, 2, 3, 7, 3, 2, 0, 2, 4, 2, 0, 0, 8, 9, 2, 5, 1, 6, 1, 3, 7, 4, 2, 4, 5, 6, 7, 2, 6, 3, 7, 0, 9, 3, 9, 6, 1, 9, 7, 6, 9, 4, 5, 5, 8, 9, 2, 1, 8
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Comments

This constant is called Euler product 2==1 modulo 5 (see Mathar's Definition 5 formula (38)) or equivalently zeta 2==1 modulo 5.

Examples

			1.01091516060101952260495658428951492...
		

Crossrefs

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[5, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021, took 20 minutes *)

Formula

Equals Sum_{k>=1} 1/A004615(k)^2. - Amiram Eldar, Jan 24 2021
Equals exp(-gamma/2)*Pi/(A340839^2*sqrt(5*log((1 + sqrt (5))/2))). - Artur Jasinski, Jan 30 2021

A340127 Decimal expansion of Product_{primes p == 4 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 0, 0, 4, 9, 6, 0, 3, 2, 3, 9, 2, 2, 2, 9, 7, 5, 5, 8, 9, 9, 3, 7, 4, 9, 6, 2, 4, 8, 1, 0, 2, 5, 2, 1, 8, 4, 7, 9, 5, 5, 1, 0, 2, 9, 4, 1, 8, 8, 0, 2, 2, 8, 8, 0, 1, 9, 9, 5, 2, 8, 3, 7, 8, 5, 2, 1, 5, 0, 7, 1, 2, 7, 7, 0, 0, 7, 0, 0, 7, 6, 9, 8, 8, 5, 4, 3, 2, 4, 9, 1, 3, 6, 1, 1, 8, 0, 0, 6, 1, 9
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Examples

			1.0049603239222975589937496248102521847955102941880228801995283785215071277...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[5, 4, 2]]

Formula

Equals (1/C(5,4))*Pi*sqrt(3*C(5,1)*C(5,2)*C(5,3)/(5*C(5,4)*log(2+sqrt(5)))).
for definitions of Mertens constants C(5,n) see A. Languasco and A. Zaccagnini 2010.
for high precision numerical values C(5,n) see A. Languasco and A. Zaccagnini 2007.
C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C(5,3)=0.8059510404482678640573768602784309320812881149390108979348...
C(5,4)=1.29936454791497798816084001496426590950257497040832966201678...
Equals (1/C(5,4)^2)*Pi*sqrt(3*exp(-gamma)/(4*log(2 + sqrt(5)))), where gamma is the Euler-Mascheroni constant A001620.
Equals Sum_{k>=1} 1/A004618(k)^2. - Amiram Eldar, Jan 24 2021

A340628 Decimal expansion of Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 0, 0, 9, 9, 3, 5, 9, 3, 4, 8, 2, 9, 4, 0, 1, 0, 2, 7, 3, 4, 9, 0, 3, 8, 4, 8, 8, 2, 4, 1, 7, 7, 8, 1, 6, 7, 7, 1, 5, 8, 5, 8, 5, 4, 7, 5, 4, 8, 8, 0, 1, 0, 1, 3, 0, 5, 8, 1, 9, 3, 2, 7, 9, 5, 1, 1, 8, 5, 9, 2, 6, 4, 5, 3, 1, 8, 0, 1, 2, 4, 5, 8, 9, 3, 6, 3, 1, 2, 2, 6, 0, 2, 5, 8, 9, 9, 2, 9, 9, 8, 8, 6, 4, 7, 8, 1, 5, 5, 6, 2, 6, 2, 1, 3, 2, 2, 5, 4, 6, 2
Offset: 1

Views

Author

Artur Jasinski, Jan 13 2021

Keywords

Examples

			1.009935934829401027349038488241778167715858547548801013...
		

Crossrefs

Programs

  • Maple
    evalf(Re(2*Pi^2/(5*sqrt(13*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah
  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5,4,4]/Z[5,4,2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
    digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
    cl[x_] :=I(PolyLog[2,(-1)^x] - PolyLog[2,-(-1)^(1-x)]);
    A340628 :=(4 Pi^2)/(5 Sqrt[13])/ Sqrt[cl[2/5]^2 + cl[4/5]^2];
    digitize[A340628] (* Peter Luschny, Jan 23 2021 *)

Formula

Equals 6*sqrt(5)/(13*A340629).
Equals 6*sqrt(13)*Pi^2/(195*g) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
Equals A340127^2/A340809. - R. J. Mathar, Jan 22 2021
Equals Sum_{q in A004618} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

Extensions

Corrected and more terms from Vaclav Kotesovec, Jan 15 2021

A340576 Decimal expansion of Product_{primes p == 5 (mod 6)} 1/(1-1/p^2).

Original entry on oeis.org

1, 0, 6, 0, 5, 4, 8, 2, 9, 3, 1, 6, 9, 1, 1, 0, 7, 2, 8, 1, 7, 4, 1, 2, 6, 3, 6, 4, 3, 0, 9, 8, 7, 2, 0, 3, 4, 9, 3, 0, 7, 7, 1, 3, 0, 2, 0, 4, 4, 8, 7, 1, 6, 3, 1, 2, 7, 9, 9, 4, 3, 7, 2, 1, 8, 1, 7, 9, 4, 6, 0, 8, 0, 2, 4, 4, 0, 6, 6, 3, 7, 4, 5, 9, 0, 3, 1, 6, 1, 4, 3, 8, 7, 6, 8, 5, 6, 3, 3, 5, 6, 5, 0, 1, 5
Offset: 1

Views

Author

Jean-François Alcover, Jan 12 2021

Keywords

Comments

The four similar sequences for products of primes mod 6 are these:
A175646 for Product_{primes p == 1 (mod 6)} 1/(1-1/p^2),
A340576 for Product_{primes p == 5 (mod 6)} 1/(1-1/p^2),
A340577 for Product_{primes p == 1 (mod 6)} 1/(1+1/p^2),
A340578 for Product_{primes p == 5 (mod 6)} 1/(1+1/p^2).

Examples

			1.06054829316911072817412636430987203493077130204487163127994372...
		

Crossrefs

Programs

  • Maple
    a := n -> 3^(2^(-n-2))*((1-3^(-2^(n+1)))/2)^(2^(-n-1)):
    b := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))):
    c := n -> a(n)*b(2^(n+1))^(1/2^(n+1)):
    Digits := 107: evalf((3/4)*mul(c(n), n=0..9)); # Peter Luschny, Jan 14 2021
  • Mathematica
    digits = 105;
    precision = digits + 10;
    prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
    Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision] &;
    Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
    Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
    gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
    pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
    RealDigits[pB, 10, digits][[1]] (* Most of this code is due to Artur Jasinski *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6,5,2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

g = A143298 = (9 - PolyGamma(1, 2/3) + PolyGamma(1, 4/3))/(4 sqrt(3));
h = A301429;
Equals (3*sqrt(3)*h^2)/2.
Equals (3/4)*A333240.
A340577 = Pi^4/(243*g*h^2);
A340578 = (45*g*h^2)/(2*Pi^2).
Equals Pi^2/(9*A175646). - Artur Jasinski, Jan 11 2021
Equals Sum_{k>=1} 1/A259548(k)^2. - Amiram Eldar, Jan 24 2021

A340577 Decimal expansion of Product_{primes p == 1 (mod 6)} 1/(1+1/p^2).

Original entry on oeis.org

9, 6, 7, 5, 5, 0, 4, 0, 2, 5, 1, 9, 5, 6, 1, 8, 8, 6, 6, 0, 9, 4, 7, 0, 7, 7, 0, 4, 3, 9, 0, 6, 7, 7, 3, 0, 0, 1, 5, 2, 4, 9, 1, 2, 9, 6, 0, 3, 0, 4, 3, 8, 6, 3, 5, 6, 3, 0, 2, 3, 9, 8, 0, 8, 4, 0, 6, 8, 7, 3, 9, 5, 1, 6, 3, 8, 3, 9, 9, 9, 4, 6, 1, 6, 0, 5, 4, 1, 7, 8, 7, 3, 7, 7, 4, 2, 2, 3, 6, 8, 7, 5, 9, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, Jan 12 2021

Keywords

Examples

			0.96755040251956188660947077043906773001524912960304386356302398...
		

Crossrefs

Programs

  • Mathematica
    digits = 105;
    precision = digits + 5;
    prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
    Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
    Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
    Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
    gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
    pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
    pC = (2*Pi^4)/(243*pB*Lv[2]);
    RealDigits[pC, 10, digits][[1]](* Most of this code is due to Artur Jasinski *)
    (* -------------------------------------------------------------------------- *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6, 1, 4]/Z[6, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

Equals 1.0004615.../A175646, both constants taken from p 27 of arXiv:1008.2537v2. - R. J. Mathar, Aug 21 2022

Extensions

a(104) corrected by Vaclav Kotesovec, Jan 15 2021

A340578 Decimal expansion of Product_{primes p == 5 (mod 6)} 1/(1+1/p^2).

Original entry on oeis.org

9, 4, 4, 5, 0, 0, 9, 3, 4, 5, 0, 4, 7, 0, 0, 9, 8, 6, 7, 3, 4, 2, 9, 1, 0, 9, 4, 1, 9, 1, 4, 4, 4, 3, 4, 2, 5, 4, 6, 1, 1, 0, 7, 8, 0, 8, 6, 9, 0, 6, 6, 7, 6, 9, 5, 5, 7, 3, 5, 7, 7, 1, 1, 1, 8, 3, 8, 2, 6, 4, 5, 1, 9, 9, 3, 3, 5, 7, 4, 6, 3, 9, 5, 6, 7, 7, 5, 3, 9, 6, 1, 7, 0, 5, 2, 9, 9, 4, 5, 3, 5, 8, 6, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, Jan 12 2021

Keywords

Examples

			0.94450093450470098673429109419144434254611078086906676955735771...
		

Crossrefs

Programs

  • Mathematica
    digits = 105;
    precision = digits + 5;
    prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
    Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
    Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
    Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
    gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
    pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
    pD = (45*pB*Lv[2])/(4*Pi^2);
    RealDigits[pD, 10, digits][[1]] (* Most of this code is due to Artur Jasinski *)
    (* -------------------------------------------------------------------------- *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6, 5, 4]/Z[6, 5, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

A340629 Decimal expansion of Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 0, 2, 1, 8, 7, 8, 0, 6, 0, 4, 1, 8, 7, 5, 6, 6, 7, 5, 7, 4, 4, 4, 4, 8, 9, 1, 4, 6, 0, 0, 2, 7, 0, 8, 2, 6, 1, 7, 0, 4, 6, 0, 7, 3, 7, 7, 3, 2, 5, 1, 6, 4, 0, 6, 6, 6, 0, 1, 1, 9, 4, 4, 3, 7, 7, 0, 9, 0, 4, 7, 6, 7, 0, 5, 6, 6, 0, 0, 8, 6, 0, 6, 4, 5, 5, 1, 4, 9, 9, 9, 5, 0, 0, 5, 9, 8, 4, 1, 4, 9, 9, 9, 0, 6, 2, 3, 7, 6, 0, 1, 0, 5, 2, 3, 3, 3, 2, 0, 3, 5
Offset: 1

Views

Author

Artur Jasinski, Jan 13 2021

Keywords

Examples

			1.0218780604187566757444489146002708261704607377325...
		

Crossrefs

Programs

  • Maple
    evalf(Re(15*sqrt((1/13)*(5*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))/Pi^2), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah.
  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5,1,4]/Z[5,1,2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
    digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
    cl[x_] := I (PolyLog[2, (-1)^x] - PolyLog[2, -(-1)^(1 - x)]);
    A340629 := (15 Sqrt[65]/(26 Pi^2)) Sqrt[cl[2/5]^2 + cl[4/5]^2];
    digitize[A340629] (* Peter Luschny, Jan 23 2021 *)

Formula

Equals 6*sqrt(5)/(13*A340628).
Equals A340004^2/A340808. - R. J. Mathar, Jan 15 2021
Equals 15*sqrt(65)*g/(13*Pi^2) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
Equals Sum_{q in A004615} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

Extensions

Corrected and more terms from Vaclav Kotesovec, Jan 15 2021
Showing 1-10 of 19 results. Next