A333242 Prime numbers with an odd number of steps in their prime index chain.
2, 5, 7, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 71, 73, 79, 89, 97, 101, 103, 107, 113, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 313, 317, 331, 337, 347, 349, 359, 373
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Michael P. May, Properties of Higher-Order Prime Number Sequences, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and arXiv version, arXiv:2108.04662 [math.NT], 2021.
- Michael P. May, Approximating the Prime Counting Function via an Operation on a Unique Prime Number Subsequence, arXiv:2112.08941 [math.GM], 2021.
- Michael P. May, Relationship Between the Prime-Counting Function and a Unique Prime Number Sequence, Missouri J. Math. Sci. (2023), Vol. 35, No. 1, 105-116.
- Michael P. May, Application of the Inclusion-Exclusion Principle to Prime Number Subsequences, arXiv:2402.13214 [math.GM], 2024.
Programs
-
Maple
b:= proc(n) option remember; `if`(isprime(n), 1+b(numtheory[pi](n)), 0) end: a:= proc(n) option remember; local p; p:= a(n-1); do p:= nextprime(p); if b(p)::odd then break fi od; p end: a(1):=2: seq(a(n), n=1..60); # Alois P. Heinz, Mar 15 2020
-
Mathematica
Select[Prime@ Range@ 75, EvenQ@ Length@ NestWhileList[ PrimePi, #, PrimeQ] &] (* Giovanni Resta, Mar 15 2020 *)
-
PARI
\\ here b(n) is A078442. b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k} select(n->b(n)%2, [1..500]) \\ Andrew Howroyd, Mar 15 2020
Formula
{ p in primes : A078442(p) mod 2 = 1 }.
Extensions
Terms a(21) and beyond from Andrew Howroyd, Mar 15 2020
Comments