A333261 Numbers k such that A071324(k) = A071324(k+1).
1, 5, 51, 68, 87, 116, 171, 176, 591, 2108, 2403, 7143, 8787, 9308, 18548, 19371, 27387, 32127, 34887, 37928, 40131, 140667, 180548, 192428, 200996, 433311, 521727, 934449, 2476671, 2617563, 3960896, 8198156, 9670748, 11892512, 16585748, 19113651, 25367396, 25643012
Offset: 1
Examples
1 is a term since A071324(1) = A071324(2) = 1. 5 is a term since A071324(5) = A071324(6) = 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..89 (terms below 10^10)
- Shreyansh Jaiswal, On the Even Solutions of A071324(n) = A071324(n+1), Jun 14, 2025.
Programs
-
Mathematica
f[n_] := Plus @@ (-(d = Divisors[n])*(-1)^(Range[Length[d],1,-1])); seq = {}; f1 = f[1]; Do[f2 = f[n]; If[f1 == f2, AppendTo[seq, n-1]]; f1 = f2, {n, 2, 50000}]; seq SequencePosition[Table[Total[Times@@@Partition[Riffle[Reverse[Divisors[n]],{1,-1},{2,-1,2}],2]],{n,2565*10^4}],{x_,x_}][[All,1]] (* Harvey P. Dale, Nov 06 2022 *)
-
Python
from sympy import divisors; from functools import lru_cache cached_divisors = lru_cache()(divisors) def c(n): return sum(d if i%2==0 else -d for i, d in enumerate(reversed(cached_divisors(n)))) for n in range(1,2201): if c(n) == c(n+1): print(n, end=", ") # Shreyansh Jaiswal, Apr 14 2025
Comments