cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333352 a(n) is the product of indices of the smallest and greatest prime factors of n.

Original entry on oeis.org

1, 1, 4, 1, 9, 2, 16, 1, 4, 3, 25, 2, 36, 4, 6, 1, 49, 2, 64, 3, 8, 5, 81, 2, 9, 6, 4, 4, 100, 3, 121, 1, 10, 7, 12, 2, 144, 8, 12, 3, 169, 4, 196, 5, 6, 9, 225, 2, 16, 3, 14, 6, 256, 2, 15, 4, 16, 10, 289, 3, 324, 11, 8, 1, 18, 5, 361, 7, 18, 4, 400, 2, 441, 12, 6, 8, 20, 6, 484, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 15 2020

Keywords

Examples

			a(315) = a(3^2 * 5 * 7) = a(prime(2)^2 * prime(3) * prime(4)) = 2 * 4 = 8.
		

Crossrefs

Cf. A000079 (positions of 1's), A000720, A002110, A006530, A020639, A033845 (positions of 2's), A055396, A061395, A066048, A156061, A243055.

Programs

  • Mathematica
    a[1] = 1; a[n_] := PrimePi[FactorInteger[n] [[1, 1]]] PrimePi[ FactorInteger[ n] [[-1, 1]]]; Table[a[n], {n, 1, 80}]
  • PARI
    a(n) = if (n==1, 1, my(f=factor(n)[,1]); primepi(vecmin(f))*primepi(vecmax(f))); \\ Michel Marcus, Mar 16 2020

Formula

If n = Product (p_j^k_j) then a(n) = min{pi(p_j)} * max{pi(p_j)}, where pi = A000720.
a(n) = A055396(n) * A061395(n) for n > 1.
a(2*n) = A061395(n) for n > 1.
a(n^k) = a(n) for k > 0
a(2*prime(n)^k) = n for k > 0.
a(prime(n)^k) = n^2 for k > 0.
a(n!) = pi(n) for n > 1.
a(A002110(n)) = n.