cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333371 Exponential convolution of primorial numbers (A002110) with themselves.

Original entry on oeis.org

1, 4, 20, 132, 1116, 12420, 171300, 2884980, 56674380, 1289511300, 34769949060, 1063909626780, 37255008811020, 1470406699982220, 63114539746598340, 2936218980067393020, 150241360192861037100, 8497891914008911514100, 514514062115556069627060
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 17 2020

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, ithprime(n)*p(n-1)) end:
    a:= n-> add(p(i)*p(n-i)*binomial(n, i), i=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 17 2020
  • Mathematica
    primorial[n_] := Product[Prime[k], {k, 1, n}]; a[n_] := Sum[Binomial[n, k] primorial[k] primorial[n - k], {k, 0, n}]; Table[a[n], {n, 0, 18}]

Formula

E.g.f.: (Sum_{k>=0} prime(k)# * x^k / k!)^2, where prime()# = A002110.
a(n) = Sum_{k=0..n} binomial(n,k) * prime(k)# * prime(n-k)#.