A333432 A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.
1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 0, 2, 3, 2, 5, 2, 7, 2, ... 3, 0, 4, 9, 4, 25, 3, 49, 4, ... 4, 0, 8, 21, 6, 125, 4, 343, 8, ... 5, 0, 16, 27, 8, 625, 6, 889, 10, ... 6, 0, 20, 63, 12, 1555, 8, 2359, 16, ... 7, 0, 32, 81, 16, 3125, 9, 2401, 20, ... 8, 0, 40, 147, 18, 7775, 12, 6223, 32, ... 9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..25, flattened
- OEIS Wiki, 2^n mod n
Crossrefs
Programs
-
Maple
A:= proc() local h, p; p:= proc() [1] end; proc(n, k) if k=2 then `if`(n=1, 1, 0) else while nops(p(k))
1 do od; p(k):= [p(k)[], h] od; p(k)[n] fi end end(): seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Mar 24 2020 -
Mathematica
A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]]; Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)