cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116621 Positive integers n such that 13^n == 1 (mod n).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 14, 16, 18, 20, 24, 27, 28, 32, 36, 40, 42, 48, 54, 56, 60, 64, 68, 72, 80, 81, 84, 96, 98, 100, 108, 112, 120, 126, 128, 136, 140, 144, 160, 162, 168, 180, 183, 192, 196, 200, 204, 216, 220, 224, 240, 243, 252, 256, 272, 280, 288, 294, 300, 320
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Crossrefs

Column k=13 of A333432.

Programs

  • Mathematica
    Join[{1}, Select[Range[1, 750], Mod[13^#, #] == 1 &]] (* G. C. Greubel, Nov 19 2017 *)
    Join[{1}, Select[Range[320], PowerMod[13, #, #] == 1 &]] (* Robert Price, Apr 10 2020 *)
  • PARI
    isok(n) = Mod(13, n)^n == 1; \\ Michel Marcus, Nov 19 2017

Extensions

1 prepended by Max Alekseyev, Jun 28 2011

A333429 A(n,k) is the n-th number m that divides k^m + 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 1, 2, 9, 0, 1, 5, 10, 27, 0, 1, 2, 25, 50, 81, 0, 1, 7, 3, 125, 250, 171, 0, 1, 2, 49, 9, 205, 1250, 243, 0, 1, 3, 10, 203, 21, 625, 5050, 513, 0, 1, 2, 9, 50, 343, 26, 1025, 6250, 729, 0, 1, 11, 5, 27, 250, 1379, 27, 2525, 11810, 1539, 0
Offset: 1

Views

Author

Alois P. Heinz, Mar 20 2020

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,     1,    1,   1,    1,     1,   1,    1,     1, ...
  2,    3,     2,    5,   2,    7,     2,   3,    2,    11, ...
  0,    9,    10,   25,   3,   49,    10,   9,    5,   121, ...
  0,   27,    50,  125,   9,  203,    50,  27,   25,   253, ...
  0,   81,   250,  205,  21,  343,   250,  57,   82,  1331, ...
  0,  171,  1250,  625,  26, 1379,  1250,  81,  125,  2783, ...
  0,  243,  5050, 1025,  27, 1421,  2810, 171,  625,  5819, ...
  0,  513,  6250, 2525,  63, 2401,  5050, 243, 2525, 11891, ...
  0,  729, 11810, 3125,  81, 5887,  6250, 513, 3125, 14641, ...
  0, 1539, 25250, 5125, 147, 9653, 14050, 729, 3362, 30613, ...
		

Crossrefs

Rows n=1-2 give: A000012, A092067.
Main diagonal gives A333430.
Cf. A333432.

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=1 then `if`(n<3, n, 0) else
            while nops(p(k)) 0 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    dmax = 12;
    mmax = 2^(dmax+3);
    col[k_] := col[k] = Select[Range[mmax], Divisible[k^#+1, #]&];
    A[n_, k_] := If[n>2 && k==1, 0, col[k][[n]]];
    Table[A[n, d-n+1], {d, 1, dmax}, {n, 1, d}] // Flatten (* Jean-François Alcover, Jan 05 2021 *)

A333500 A(n,k) is the n-th number m such that m^2 divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 21, 20, 0, 6, 1, 5, 4, 903, 220, 0, 7, 1, 2, 1555, 6, 2667, 1220, 0, 8, 1, 7, 3, 9673655, 12, 7077, 2420, 0, 9, 1, 2, 889, 4, 187159211791705, 42, 113799, 5060, 0, 10, 1, 3, 4, 2359, 6, 776119592182705, 52, 114681, 13420, 0, 11
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,    1,  1,               1, ...
  2, 0,    2,    3,  2,               5, ...
  3, 0,    4,   21,  4,            1555, ...
  4, 0,   20,  903,  6,         9673655, ...
  5, 0,  220, 2667, 12, 187159211791705, ...
  6, 0, 1220, 7077, 42, 776119592182705, ...
		

Crossrefs

A333433 a(n) is the n-th number m that divides n^m - 1 (or 0 if m does not exist).

Original entry on oeis.org

1, 0, 4, 21, 8, 1555, 9, 6223, 40, 999, 20, 130801, 24, 4484077, 128, 117, 60, 118285781329, 42, 1432001198261, 104, 819, 72, 302508121, 81, 75625, 200, 61731, 78, 14507145975869, 72, 21958351241, 820, 12321, 289, 4375, 144
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2020

Keywords

Comments

From Jinyuan Wang, Mar 25 2020: (Start)
For n > 2, n < a(n) < q^(n-1), where q is a prime factor of n - 1.
If p is a prime, then a(p^e+1) is divisible by p. Proof: we can prove that p | m for m > 1 and n = p^e + 1. If n^m == 1 (mod m) and m > 1 is the minimum value that cannot be divisible by p, then gcd(m, eulerphi(m)) = 1. Thus, m must be of the form q*p_2*...*p_k, where q < p_2 < ... < p_k. Note that q | (n^m - 1) = (n^q - 1)*(Sum_{i=0..(m/q)-1} n)^(i*q)) and n^q - 1 can never be divisible by q. Therefore, Sum_{i=0..(m/q)-1} n^(i*q) == n^(m/q) - 1 == 0 (mod q). Because n^(q-1) == 1 (mod q) and gcd(m/q, q - 1) = 1, then n == 1 (mod q), a contradiction! (End)
a(38) <= 14948925257859919. - Giovanni Resta, Apr 15 2020

Crossrefs

Main diagonal of A333432.

Programs

  • PARI
    {a(n) = if(n==2, 0, my(cnt=0, k=0); while(cnt
    				

Formula

a(n) = A333432(n,n).

Extensions

a(30)-a(37) from Giovanni Resta, Apr 15 2020

A333506 Numbers k that divide 19^k-1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 42, 48, 50, 54, 60, 64, 72, 80, 81, 84, 90, 96, 100, 108, 110, 120, 126, 128, 136, 144, 150, 156, 160, 162, 168, 180, 192, 200, 210, 216, 220, 240, 243, 250, 252, 256, 270, 272, 288, 294, 300, 312, 320, 324, 330, 336
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2020

Keywords

Crossrefs

Columns k=19 of A333432.

Programs

  • Mathematica
    Join[{1}, Select[Range[2, 336], PowerMod[19, #, #] == 1 &]] (* Amiram Eldar, May 05 2021 *)
  • PARI
    for(k=1, 1e3, if(Mod(19, k)^k==1, print1(k", ")))
Showing 1-5 of 5 results.