cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A333432 A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,  1,     1,  1,     1,  1, ...
  2, 0,  2,   3,  2,     5,  2,     7,  2, ...
  3, 0,  4,   9,  4,    25,  3,    49,  4, ...
  4, 0,  8,  21,  6,   125,  4,   343,  8, ...
  5, 0, 16,  27,  8,   625,  6,   889, 10, ...
  6, 0, 20,  63, 12,  1555,  8,  2359, 16, ...
  7, 0, 32,  81, 16,  3125,  9,  2401, 20, ...
  8, 0, 40, 147, 18,  7775, 12,  6223, 32, ...
  9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
		

Crossrefs

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=2 then `if`(n=1, 1, 0) else
            while nops(p(k)) 1 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
    Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)

A333430 a(n) is the n-th number m that divides n^m + 1 (or 0 if m does not exist).

Original entry on oeis.org

1, 3, 10, 125, 21, 1379, 2810, 243, 3125, 30613, 729, 685633, 850, 183
Offset: 1

Views

Author

Alois P. Heinz, Mar 20 2020

Keywords

Comments

a(15) > 10^19.
a(16) = 29623979969.
a(17) = 250.
a(19) = 13915.
a(15) <= 76717223012242243155874. - Jinyuan Wang, Mar 25 2020
From Jon E. Schoenfield, Aug 28 2021: (Start)
a(18) = 16983563041.
Next 20 terms after the first unknown term (a(15)): 29623979969, 250, 16983563041, 13915, 1143, 23426, 5608987, 2187, 75625, 25160213, 2709, 26803, a(28), 729, a(30), 2702258, 6633, 118810, 15625, 6379479. (End)

Crossrefs

Main diagonal of A333429.
Cf. A333433.

Programs

  • PARI
    a(n) = {my(c=0, m=0); while(cJinyuan Wang, Mar 25 2020
    
  • Python
    def a(n):
        if n == 1: return 1
        m = 0
        for c in range(1, n+1):
            m += 1
            while not (pow(n, m, m) + 1)%m == 0: m += 1
        return m
    print([a(n) for n in range(1, 15)]) # Michael S. Branicky, Aug 28 2021

Formula

a(n) = A333429(n,n).

A333502 a(n) is the n-th number m such that m^2 divides n^m - 1 (or 0 if m does not exist).

Original entry on oeis.org

1, 0, 4, 903, 12, 776119592182705, 12, 42931441, 136, 27486820443, 60, 107342336783, 84
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2020

Keywords

Crossrefs

Main diagonal of A333500.

Programs

  • PARI
    {a(n) = if(n==2, 0, my(cnt=0, k=0); while(cnt
    				

Formula

a(n) = A333500(n,n).
Showing 1-3 of 3 results.