cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A127092 Numbers k such that k^2 divides 11^k - 1.

Original entry on oeis.org

1, 2, 4, 5, 6, 10, 12, 20, 30, 42, 60, 84, 114, 156, 210, 222, 228, 244, 420, 444, 570, 732, 780, 798, 930, 1092, 1110, 1140, 1220, 1554, 1596, 1806, 1860, 2220, 2436, 2964, 3108, 3612, 3660, 3990, 4218, 5124, 5460, 5772, 6510, 7770, 7980, 8268, 8436, 9030
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Comments

Subsequence of A068383.

Crossrefs

Programs

  • Mathematica
    Select[Range[15000], IntegerQ[(PowerMod[11, #, #^2 ]-1)/#^2 ]&]
    Join[{1},Select[Range[9100],PowerMod[11,#,#^2]==1&]] (* Harvey P. Dale, Dec 30 2018 *)
  • PARI
    for(k=1, 1e4, if(Mod(11, k^2)^k==1, print1(k", "))) \\ Seiichi Manyama, Mar 25 2020

A128399 Numbers k such that k^2 divides 19^k-1.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 10, 12, 18, 20, 30, 36, 42, 60, 84, 90, 110, 126, 156, 180, 210, 220, 252, 294, 330, 381, 420, 468, 588, 630, 660, 724, 762, 780, 882, 930, 990, 1092, 1143, 1260, 1332, 1470, 1510, 1524, 1764, 1806, 1830, 1860, 1980, 2028, 2058, 2172, 2286, 2310
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[3000],PowerMod[19,#,#^2]==1&]] (* Harvey P. Dale, Oct 24 2017 *)
  • PARI
    for(k=1, 1e4, if(Mod(19, k^2)^k==1, print1(k", "))) \\ Seiichi Manyama, Mar 25 2020

A333432 A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,  1,     1,  1,     1,  1, ...
  2, 0,  2,   3,  2,     5,  2,     7,  2, ...
  3, 0,  4,   9,  4,    25,  3,    49,  4, ...
  4, 0,  8,  21,  6,   125,  4,   343,  8, ...
  5, 0, 16,  27,  8,   625,  6,   889, 10, ...
  6, 0, 20,  63, 12,  1555,  8,  2359, 16, ...
  7, 0, 32,  81, 16,  3125,  9,  2401, 20, ...
  8, 0, 40, 147, 18,  7775, 12,  6223, 32, ...
  9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
		

Crossrefs

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=2 then `if`(n=1, 1, 0) else
            while nops(p(k)) 1 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
    Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)

A333502 a(n) is the n-th number m such that m^2 divides n^m - 1 (or 0 if m does not exist).

Original entry on oeis.org

1, 0, 4, 903, 12, 776119592182705, 12, 42931441, 136, 27486820443, 60, 107342336783, 84
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2020

Keywords

Crossrefs

Main diagonal of A333500.

Programs

  • PARI
    {a(n) = if(n==2, 0, my(cnt=0, k=0); while(cnt
    				

Formula

a(n) = A333500(n,n).
Showing 1-4 of 4 results.