cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333450 a(n) = Sum_{k=1..n} mu(k) * prime(floor(n/k)).

Original entry on oeis.org

2, 1, 1, 2, 4, 5, 7, 7, 9, 12, 12, 15, 17, 16, 16, 20, 24, 22, 26, 23, 21, 26, 28, 28, 32, 33, 31, 32, 32, 29, 41, 39, 43, 40, 44, 40, 44, 45, 45, 47, 51, 52, 60, 55, 53, 52, 62, 64, 64, 56, 54, 55, 55, 65, 67, 69, 69, 70, 74, 73, 73, 70, 80, 80, 76, 69, 81, 84, 90, 81, 83, 87, 93, 94
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 21 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[k] Prime[Floor[n/k]], {k, 1, n}], {n, 1, 74}]
    g[1] = 2; g[n_] := Prime[n] - Prime[n - 1]; a[n_] := Sum[Sum[MoebiusMu[k/d] g[d], {d, Divisors[k]}], {k, 1, n}]; Table[a[n], {n, 1, 74}]
  • PARI
    a(n) = sum(k=1, n, moebius(k)*prime(n\k)); \\ Michel Marcus, Mar 22 2020
    
  • Python
    from functools import lru_cache
    from sympy import prime
    @lru_cache(maxsize=None)
    def A333450(n):
        c, j = 2*(n+1)-prime(n), 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A333450(k1)
            j, k1 = j2, n//j2
        return 2*j-c # Chai Wah Wu, Mar 31 2021

Formula

Sum_{k=1..n} a(floor(n/k)) = prime(n).