cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A116694 Array read by antidiagonals: number of ways of dividing an n X m rectangle into integer-sided rectangles.

Original entry on oeis.org

1, 2, 2, 4, 8, 4, 8, 34, 34, 8, 16, 148, 322, 148, 16, 32, 650, 3164, 3164, 650, 32, 64, 2864, 31484, 70878, 31484, 2864, 64, 128, 12634, 314662, 1613060, 1613060, 314662, 12634, 128, 256, 55756, 3149674, 36911922, 84231996, 36911922, 3149674, 55756, 256
Offset: 1

Views

Author

Helena Verrill (verrill(AT)math.lsu.edu), Feb 23 2006

Keywords

Examples

			Array begins:
   1,    2,      4,        8,         16,           32, ...
   2,    8,     34,      148,        650,         2864, ...
   4,   34,    322,     3164,      31484,       314662, ...
   8,  148,   3164,    70878,    1613060,     36911922, ...
  16,  650,  31484,  1613060,   84231996,   4427635270, ...
  32, 2864, 314662, 36911922, 4427635270, 535236230270, ...
		

Crossrefs

Columns (or rows) 1-10 give: A011782, A034999, A208215, A220297, A220298, A220299, A220300, A220301, A220302, A220303.
Main diagonal gives A182275.
For irreducible or "tight" pavings, see also A285357.
Triangular version: A333476.
A(2n,n) gives A333495.

Programs

  • Maple
    M:= proc(n) option remember; local k; k:= 2^(n-2);
          `if`(n=1, Matrix([2]), Matrix(2*k, (i, j)->`if`(i<=k,
          `if`(j<=k, M(n-1)[i, j], B(n-1)[i, j-k]),
          `if`(j<=k, B(n-1)[i-k, j], 2*M(n-1)[i-k, j-k]))))
        end:
    B:= proc(n) option remember; local k; k:=2^(n-2);
          `if`(n=1, Matrix([1]), Matrix(2*k, (i,j)->`if`(i<=k,
          `if`(j<=k, B(n-1)[i, j], B(n-1)[i, j-k]),
          `if`(j<=k, B(n-1)[i-k, j], M(n-1)[i-k, j-k]))))
        end:
    A:= proc(n, m) option remember; `if`(n=0 or m=0, 1, `if`(m>n, A(m, n),
          add(i, i=map(rhs, [op(op(2, M(m)^(n-1)))]))))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Dec 13 2012
  • Mathematica
    M[n_] := M[n] = Module[{k = 2^(n-2)}, If[n == 1, {{2}}, Table[If[i <= k, If[j <= k, M[n-1][[i, j]], B[n-1][[i, j-k]]], If[j <= k, B[n-1][[i-k, j]], 2*M[n-1][[i-k, j-k]]]], {i, 1, 2k}, {j, 1, 2k}]]]; B[n_] := B[n] = Module[{k = 2^(n-2)}, If[n == 1, {{1}}, Table[If[i <= k, If[j <= k, B[n-1][[i, j]], B[n-1][[i, j-k]]], If[j <= k, B[n-1][[i-k, j]], M[n-1][[i-k, j-k]]]], {i, 1, 2k}, {j, 1, 2k}]]]; A[0, 0] = 1; A[n_ , m_ ] /; m>n := A[m, n]; A[n_ , m_ ] :=MatrixPower[M[m], n-1] // Flatten // Total; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Feb 23 2015, after Alois P. Heinz *)
  • PARI
    A116694(m,n)=#fill(m,n) \\ where fill() below computes all tilings. - M. F. Hasler, Jan 22 2018
    fill(m,n,A=matrix(m,n),i=1,X=1,Y=1)={while((Y>n&&X++&&!Y=0)||A[X,Y], X>m&&return([A]); Y++); my(N=n,L=[]); for(x=X,m, A[x,Y]&&break; for(y=Y,N, if(A[x,y],for(j=y,N,for(k=X,x-1,A[k,j]=0));N=y-1;break); for(j=X,x,A[j,y]=i); L=concat(L,fill(m,n,A,i+1,X,y+1))); x
    				

Extensions

Edited and more terms from Alois P. Heinz, Dec 09 2012

A182275 Number of ways of dividing an n X n square into rectangles of integer side lengths.

Original entry on oeis.org

1, 1, 8, 322, 70878, 84231996, 535236230270, 18100579400986674, 3250879178100782348462, 3097923464622249063718465240, 15657867573050419014814618149422562, 419678195343896524683571751908598967042082, 59647666241586874002530830848160043213559146735474
Offset: 0

Views

Author

Matthew C. Russell, Apr 23 2012

Keywords

Examples

			For n=2 the a(2) = 8 ways to divide are:
._ _   _ _   _ _   _ _   _ _   _ _   _ _   _ _
|   | | | | |_ _| | |_| |_| | |_ _| |_|_| |_|_|
|_ _| |_|_| |_ _| |_|_| |_|_| |_|_| |_ _| |_|_|
		

Crossrefs

Main diagonal of A116694 and of A333476.
Cf. A034999.

Formula

a(n) = A116694(n,n) for n > 0.

Extensions

a(11)-a(12) from Steve Butler, Mar 14 2014

A333495 Number of ways of dividing a 2n X n rectangle into integer-sided rectangles.

Original entry on oeis.org

1, 2, 148, 314662, 19415751782, 34223109012944482, 1709004742525016740261850, 2407826816243421894252785348151226, 95524923938130486476975763614521056527129262, 106619635380815059627115813538573777241948002538356771858, 3346744054257695722669927876858961813239867346217968957293126431564898
Offset: 0

Views

Author

Alois P. Heinz, Mar 24 2020

Keywords

Crossrefs

Formula

a(n) = A116694(2n,n) = A333476(2n,n).
Showing 1-3 of 3 results.