A333579 a(n) = [x^n] ( (1 + x + x^2)/(1 - x + x^2) )^n.
1, 2, 8, 32, 128, 502, 1904, 6862, 22784, 64832, 120008, -223606, -4311424, -33271366, -205802344, -1142307968, -5919738880, -29159028386, -137718099760, -626077804826, -2740865583872, -11523690799904, -46214332516520, -174358991625134, -601230820510720
Offset: 0
Examples
Examples of congruences a(p) - a(1) == 0 ( mod p^3 ): a(11) - a(1) = -223606 - 2 = -(2^3)*3*7*11^3 == 0 ( mod 11^3 ) a(19) - a(1) = -626077804826 - 2 = -(2^2)*7*(19^3)*151*21589 == 0 ( mod 19^3 )
Links
- Wikipedia, Cyclotomic polynomial
Programs
-
Maple
seq(add(add(add((-1)^(n-k-i-j)*binomial(n, k)*binomial(k, i)*binomial(n+j-1, j)*binomial(j, n-k-i-j), j = 0..n-k-i), i = 0..n-k), k = 0..n), n = 0..25); #alternative program G := x -> (1 + x + x^2)/(1 - x + x^2): H := (x,n) -> series(G(x)^n, x, n+1): a:= n -> coeff(H(x, n), x, n): seq(a(n), n = 0..25);
-
Mathematica
a[n_]:=SeriesCoefficient[((1 + x + x^2)/(1 - x + x^2))^n,{x,0,n}]; Array[a,25,0] (* Stefano Spezia, Apr 30 2024 *)
-
PARI
a(n) = polcoeff(((1 + x + x^2)/(1 - x + x^2))^n+ O(x^(n+1)), n, x); \\ Michel Marcus, Mar 31 2020
Formula
a(n) = Sum_{0 <= i,j,k <= n} (-1)^(n-k-i-j)*C(n,k)*C(k,i)*C(n+j-1,j)*C(j,n-k-i-j).
Comments