A333581 Number of Hamiltonian paths in a 6 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner.
1, 16, 378, 10204, 286395, 8142184, 232408228, 6641558434, 189856823709, 5427696641303, 155171211771501, 4436158800822989, 126824318787312712, 3625748174071085779, 103655548766966797516, 2963380335725281547187, 84719269552230266413889, 2422015949371169505273833
Offset: 0
Keywords
Links
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A333580(n, k): if n == 1 or k == 1: return 1 universe = tl.grid(n - 1, k - 1) GraphSet.set_universe(universe) start, goal = 1, k * n paths = GraphSet.paths(start, goal, is_hamilton=True) return paths.len() def A333581(n): return A333580(6, 2 * n + 1) print([A333581(n) for n in range(10)])
Extensions
Terms a(10) and beyond from Andrew Howroyd, Jan 30 2022