A333583 Number of Hamiltonian paths in an 8 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner.
1, 64, 6706, 851073, 114243216, 15695570146, 2178079125340, 303568139329711, 42388918310108440, 5923750747499881068, 828111786035239457647, 115782566867663040724929, 16189114623816733581826838, 2263672174616450290622937801, 316525123224847580237219904819
Offset: 0
Keywords
Links
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A333580(n, k): if n == 1 or k == 1: return 1 universe = tl.grid(n - 1, k - 1) GraphSet.set_universe(universe) start, goal = 1, k * n paths = GraphSet.paths(start, goal, is_hamilton=True) return paths.len() def A333583(n): return A333580(8, 2 * n + 1) print([A333583(n) for n in range(7)])
Extensions
Terms a(7) and beyond from Andrew Howroyd, Jan 30 2022