A333585 Number of Hamiltonian paths in a 10 X (2n+1) grid starting at the lower left corner and finishing in the upper right corner.
1, 256, 117204, 68939685, 43598351250, 28467653231928, 18879702000329222, 12620031290571348940, 8469937551020819909757, 5696439378813116535052879, 3835239247888770485464962184, 2583576672252172117218927779417, 1740899369113326621618848563838108
Offset: 0
Keywords
Links
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A333580(n, k): if n == 1 or k == 1: return 1 universe = tl.grid(n - 1, k - 1) GraphSet.set_universe(universe) start, goal = 1, k * n paths = GraphSet.paths(start, goal, is_hamilton=True) return paths.len() def A333585(n): return A333580(10, 2 * n + 1) print([A333585(n) for n in range(7)])
Extensions
Terms a(7) and beyond from Andrew Howroyd, Jan 30 2022