cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333645 a(n) = Sum_{d|n} uphi(d).

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 7, 12, 11, 10, 11, 15, 13, 14, 15, 27, 17, 22, 19, 25, 21, 22, 23, 36, 29, 26, 37, 35, 29, 30, 31, 58, 33, 34, 35, 55, 37, 38, 39, 60, 41, 42, 43, 55, 55, 46, 47, 81, 55, 58, 51, 65, 53, 74, 55, 84, 57, 58, 59, 75, 61, 62, 77, 121, 65, 66, 67, 85, 69, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 31 2020

Keywords

Comments

Inverse Moebius transform of A047994.

Crossrefs

Programs

  • Mathematica
    uphi[1] = 1; uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[n_] := Sum[uphi[d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
    A023900[n_] := Sum[MoebiusMu[d] d, {d, Divisors[n]}]; A062949[n_] := Sum[EulerPhi[d] DivisorSigma[0, d], {d, Divisors[n]}]; a[n_] := Sum[A023900[d] A062949[n/d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
    f[p_,e_] := (p^(e+1) - e*p + e - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    uphi(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); \\ A047994
    a(n) = sumdiv(n, d, uphi(d)); \\ Michel Marcus, Mar 31 2020

Formula

G.f.: Sum_{k>=1} uphi(k) * x^k / (1 - x^k).
a(n) = Sum_{d|n} A023900(d) * A062949(n/d).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p^e) = (p^(e+1) - e*p + e - 1)/(p-1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - (2*p-1)/p^3) = A152649 * A065464 = 0.5793804872... . (End)