cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333700 a(n) = Sum_{k=1..n} pi(k) * pi(n-k).

Original entry on oeis.org

0, 0, 0, 1, 4, 8, 14, 22, 32, 45, 58, 73, 90, 110, 132, 158, 184, 214, 246, 282, 320, 363, 406, 455, 506, 562, 618, 678, 738, 804, 872, 944, 1018, 1099, 1180, 1269, 1358, 1450, 1544, 1644, 1744, 1852, 1962, 2078, 2196, 2321, 2446, 2581, 2718, 2863
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 02 2020

Keywords

Comments

Convolution of A000720 with itself.

Crossrefs

Programs

  • Mathematica
    Table[Sum[PrimePi[k] PrimePi[n - k], {k, n}], {n, 50}]
    nmax = 50; CoefficientList[Series[(1/(1 - x)^2) Sum[x^Prime[k], {k, 1, nmax}]^2, {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, primepi(k)*primepi(n-k)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: (1/(1 - x)^2) * (Sum_{k>=1} x^prime(k))^2.
a(n) = Sum_{k=1..n} A046992(k) * A010051(n-k).
a(n) = Sum_{k=1..n} k * A073610(n-k+1).
From Jianing Song, Sep 27 2023: (Start)
a(n-1) = Integral_{0..n} pi(x) * pi(n-x) dx, since Integral_{0..n} pi(x) * pi(n-x) dx = Sum_{k=1..n} Integral_{k-1..k} pi(x) * pi(n-x) dx = Sum_{k=1..n} pi(k-1) * pi(n-k) = Sum_{k=0..n-1} pi(k) * pi(n-1-k) = a(n-1).
a(n) = (a(n-1) + a(n+1))/2 for n == 4 (mod 6) with n > 4, as shown in the Mathematics Stack Exchange link. (End)