A333750 Number of prime power divisors of n that are <= sqrt(n).
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 3, 0, 2, 1, 1, 1, 3, 0, 1, 1, 3, 0, 2, 0, 2, 2, 1, 0, 3, 1, 2, 1, 2, 0, 2, 1, 3, 1, 1, 0, 4, 0, 1, 2, 3, 1, 2, 0, 2, 1, 3, 0, 4, 0, 1, 2, 2, 1, 2, 0, 4, 2, 1, 0, 4, 1, 1, 1, 3, 0, 4, 1, 2, 1, 1, 1, 4, 0, 2, 2, 3
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local p; add(min(padic:-ordp(n,p),floor(1/2*log[p](n))),p=numtheory:-factorset(n)) end proc: map(f, [$1..200]); # Robert Israel, Apr 22 2020
-
Mathematica
Table[DivisorSum[n, 1 &, # <= Sqrt[n] && PrimePowerQ[#] &], {n, 1, 100}] nmax = 100; CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
PARI
a(n) = sumdiv(n, d, (d^2<=n) && isprimepower(d)); \\ Michel Marcus, Apr 03 2020
Formula
G.f.: Sum_{p prime, k>=1} x^(p^(2*k)) / (1 - x^(p^k)).