cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333823 a(n) = Sum_{d|n, d odd} (n/d)^d.

Original entry on oeis.org

1, 2, 4, 4, 6, 14, 8, 8, 37, 42, 12, 76, 14, 142, 384, 16, 18, 746, 20, 1044, 2552, 2070, 24, 536, 3151, 8218, 20440, 16412, 30, 41574, 32, 32, 178512, 131106, 94968, 263908, 38, 524326, 1596560, 32808, 42, 2379874, 44, 4194348, 16364502, 8388654, 48, 4144, 823593, 33654482
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 06 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (n/#)^# &, OddQ[#] &], {n, 50}]
    nmax = 50; CoefficientList[Series[Sum[k x^k/(1 - k^2 x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d)%2, (n/d)^d)); \\ Michel Marcus, Apr 07 2020
    
  • Python
    from sympy import divisors
    def A333823(n): return sum((n//d)**d for d in divisors(n>>(~n & n-1).bit_length(),generator=True)) # Chai Wah Wu, Jul 09 2023

Formula

G.f.: Sum_{k>=1} k * x^k / (1 - k^2*x^(2*k)).
a(2^n) = 2^n. - Seiichi Manyama, Apr 07 2020