A333865 Number of simple graphs on n nodes with vertex count > edge count + 1.
0, 1, 2, 4, 8, 18, 40, 100, 256, 705, 2057, 6370, 20803, 71725, 259678, 985244, 3905022, 16124936, 69188809, 307765510, 1416146859, 6727549181, 32938379216, 165942445714, 859020421012, 4563322971706, 24847598243116, 138533012486423, 790075521708603, 4605183081182354
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Graceful Graph
- Eric Weisstein's World of Mathematics, Simple Graph
- Eric Weisstein's World of Mathematics, Ungraceful Graph
Programs
-
Mathematica
Get["Combinatorica`"] // Quiet; Table[Total[Take[CoefficientList[GraphPolynomial[n, x], x], n - 1]], {n, 20}]
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))} a(n)={my(s=0); if(n>1, forpart(p=n, s+=permcount(p)*polcoef(edges(p, i->1 + x^i + O(x^(n-1)))/(1-x), n-2) )); s/n!} \\ Andrew Howroyd, Apr 08 2020
Formula
a(n) <= A308556(n).
a(n) = Sum_{k=0..n-2} A008406(n, k). - Andrew Howroyd, Apr 08 2020
Extensions
Terms a(11) and beyond from Andrew Howroyd, Apr 08 2020
Comments